
a p e r l - b a s e d c r o s s - a s s e m b l e r

User’s Guide v0.104

July 8, 2003

bkasm and the bkasm User’s Guide are copyright 2003 Bret Victor.

Distribution. News and updates are available at
http://bkasm.sourceforge.net

bkasm is Open-Source Software. It is distributed under the Perl
Artistic License, which allows you to use, copy, and modify it
however you like, with some restrictions. Details may be found at
http://www.opensource.org/licenses/artistic-license.php

Contact. The author may be reached at bret@ugcs.caltech.edu or
visited at
http://www.ugcs.caltech.edu/~bret

Acknowledgements. The author is deeply indebted to Larry Wall,
et al, for making the easy things easy and the hard things enjoyable;
and Larry Wall, personally, for demonstrating how technical
documentation is supposed be written.

Colophon. bkasm was written in GNU Emacs 21.2.1 and developed
with ActiveState’s distribution of perl v5.8.0 for Windows. This
document was also written in GNU Emacs, and was typeset with the
MiKTEX 2.2 distribution of LATEX 2ε.

http://bkasm.sourceforge.net
http://www.opensource.org/licenses/artistic-license.php
http://www.ugcs.caltech.edu/~bret

Contents

1 Introduction 1

User’s Automatic 5

2 User’s Automatic 7

2.1 Invocation . 7

2.2 Basic Syntax . 8

2.3 Piggybacking . 8

2.4 Indirect Addressing . 9

2.5 Flow Control . 10

2.6 Symbols . 10

2.7 Data . 11

2.8 Conditional and Iterative Assembly 12

2.9 Macros . 13

2.10 Sections and Linking . 14

2.11 Output Formats . 14

User’s Manual 15

3 Invocation 17

3.1 How bkasm Eats Your Words . 18

3.2 Options . 19

iii

iv CONTENTS

3.3 Command Line Switches . 20

3.4 Messages . 22

4 The 1K Target 25

4.1 Processor Description . 25

4.2 Machine Instruction Syntax . 26

4.3 Assignment Statements . 29

4.3.1 The Accumulator . 30

4.3.2 Memory . 37

4.3.3 The b Register . 39

4.3.4 The u Register . 41

4.4 Indirect Addressing . 44

4.5 Conditionals . 47

4.5.1 1K-style Conditionals . 47

4.5.2 C-style Conditionals . 48

4.6 Flow Control . 53

4.6.1 1K-style Flow Control . 53

4.6.2 Asm-style Flow Control . 54

4.6.3 C-style Flow Control . 54

5 The Assembler 61

5.1 Basics . 62

5.1.1 The .option Directive . 63

5.1.2 The .include Directive . 65

5.1.3 The .error and .warn Directives 66

5.2 Expressions . 66

5.2.1 Operators and Functions . 67

5.2.2 Complex Math . 68

5.3 Symbols . 69

5.3.1 The .equ, .set, and .unequ Directives 69

CONTENTS v

5.3.2 Advanced Symbolism . 71

5.3.3 The .table Directive . 72

5.3.4 The .export and .x* Directives 73

5.4 Rounding . 75

5.4.1 The .round Directive and round() Function 76

5.5 Precision . 77

5.5.1 The p() Function and .pequ Directive 78

5.5.2 The ep() Function and .epequ Directive 79

5.5.3 Using Precision . 80

5.5.4 Natural Precision . 82

5.6 Labels . 82

5.6.1 Local Labels . 83

5.6.2 Macro Labels . 83

5.7 Data . 84

5.8 Locals . 84

5.9 Conditional Assembly . 84

5.10 Iterative Assembly . 84

5.11 C-style Macros . 84

5.12 Asm-style Macros . 84

5.13 Sections . 84

5.14 Embedded Perl . 84

5.15 Legacy Directives . 84

6 The Linker 85

7 The Listing File 87

8 Output Formats 89

8.1 hexdump . 89

8.2 c . 89

8.3 asm . 89

vi CONTENTS

9 Extending bkasm 91

9.1 Output Formats . 91

9.2 Targets . 91

9.3 Linkers . 91

A 1K Machine Instructions 93

B 1K Forms 95

C Directives 99

D Options 107

E Mathematical Functions 113

1
Introduction

bkasm is a Perl-based cross-assembler designed for small embedded processors, par-
ticularly digital signal processors. It currently supports the AL3101 “1K” DSP from
Alesis Semiconductor, and additional targets may be accommodated easily.

“Perl-based” can mean a couple of different things. In the literal sense, bkasm
is written in the Perl programming language and makes no secret of that; in fact,
its Perlishness is exposed to the user in several ways. If you know Perl, you can
use it to craft complicated expressions, dynamically generate bits (or entireties) of
assembly code, and even package up your dynamic code generators as modular,
reusable macros. If you feel like looking under the hood, then you can use Perl to
extend the assembler itself, adding your own directives, targets, and output formats,
or building on the existing ones.

But you certainly don’t need to know anything about Perl in order to use bkasm,
any more than you need to be a mechanic to drive a car. The other meaning of
“Perl-based” is found in bkasm’s design philosophy.

Like Perl, bkasm is one of the most powerful tools of its kind. Its hefty feature
set would take hundreds of pages to describe in depth. Features can be good. But
they are not as important as you. Your job is to write code; the job of the features
is to help you do yours, not to get in the way. Thus, bkasm never forces to confront
features that you don’t care about. In fact, you don’t need to know much of anything
to get started with bkasm. Type in a few lines of bare assembly code, and bkasm

1

2 Introduction

will give you back a few words of object code. Sure, bkasm knows powerful ways of
dealing with sections, linking, precision, complex math, memory allocation, and all
sorts of other fancy things. But it doesn’t mind holding them in reserve until you
ask for them. This is known as scalable complexity, or “what you don’t know won’t
hurt you”.

Like Perl, bkasm is familiar and eclectic. In the spirit of not reinventing the wheel
for users who are stuck in a rut, much of bkasm’s syntax and vocabulary is borrowed
from somewhere, although “somewhere” could be any of an variety of influences—
ANSI C, GNU utilities, Perl, Matlab, UNIX shells, and of course, various assemblers
of all sorts. If you have some amount of programming experience, you should be
able to look at any bkasm expression or directive and have some idea of what it does.

Like Perl, bkasm provides for the general case but is tuned for the common case.
Perl calls this “making the easy things easy and the hard things possible”. For
example, to allocate some data memory, you could say something like this:

foo .data bar, 16

This allocates sixteen words in the bardata chunk of the current section. bkasm

allows you to carve up your memory space into as many chunks as you like, and
even have overlapping chunks for unusual applications. That’s a great feature, but
it’s not typically something you care about. You normally want to allocate straight
from the main memory pool, without worrying about chunking it up. So, there’s a
shorthand:

foo .ds 16

This happens to allocate sixteen words in the sdata chunk, but since the sdata chunk
is mapped by default to the entire main memory pool, you can just think of it as
“sixteen words of data”. It also happens to be the mnemonic used by many other
assemblers. But even this isn’t good enough, because you typically only want to
allocate one word at a time. So you can just say:

foo .ds

This grabs you one word of memory, and it can’t get much more brief than that.

Like Perl, bkasm was designed to evolve. bkasm did not descend from a mountain
as inscriptions in stone tablets—it was written by a human, subject to fallacies and
fashions. Ideas change; bkasm should be able to gracefully change with them. As
a simple example, bkasm is uncharacteristically restrictive when it comes to certain
parts of the syntax: a label must end with a colon, and a directive must start with

3

a dot. These are not crutches for the parser; they form an intentional partitioning
of the namespace. They allow a target’s vocabulary to expand and new directives
to be invented without colliding with each other or with user-defined labels. bkasm
tries to be forward as well as backward compatible.

Like Perl, bkasm is extensible. At the user level, bkasm’s pattern macros allow
you extend the syntax almost arbitrarily. If you are in a reverse Polish mood, for
example, and would like to write “a = b+7” as “(b)(7)+”, you can create a simple
macro to do that. Under the hood, bkasm’s targets, linker, and output formats are
conventional, object-oriented Perl modules, and you may write your own modules
from scratch or subclass existing ones. Plugging in a module is a simple matter of
naming it on the command line.

Like Perl, bkasm is open and free. Anybody may use bkasm, and anybody may
modify it to suit their needs. Modifiers are encouraged to share their modifications,
but they don’t have to. bkasm’s license allows you to do pretty much anything you
like with it, within reason.

bkasm may be “just” an assembler, but if your job is writing assembly code all
day, the assembler is an important part of your life. bkasm was designed to be as
powerful as you’ll need, and as friendly as you’d like. So write some code, process
some signals, do your job, and have some fun.

User’s Automatic

5

2
User’s Automatic

You don’t really want to the read the manual, do you?

This chapter will give you a tour of bkasm with as little prose and as many
examples as possible. If you are already familiar with assemblers and the 1K, this
may be all you need to get going. If you’re not, then you might want to come back
here after reading the manual, to let the examples guide you as you get started.

The set of features introduced here is by no means complete, and the emphasis
is on specific, common cases instead of the general case. If you want completeness,
that’s what the manual is for.

2.1 Invocation

A typical command line for a small, single-file project:

% bkasm -WO -a= -Fc myfile.asm

-WO enables Warnings and Optimizations. -a= generates a listing file called my-

file.lst. -Fc specifies the c output format. This generates two files, myfile_obj.c
and myfile_obj.h, which represent the object code and may be compiled with your
host software.

7

8 User’s Automatic

A typical command line for a larger project:

% bkasm -WO -a= -l mylinkerscript.ld -o myobject *.asm

*.asm grabs and assembles all of the matching files in the directory. -l refers to a
linker script. The output format and other options may be specified in this script,
as is assumed here. If it specifies the c output format, -o will make it generate two
files, myobject.c and myobject.h. The listing file will be myobject.lst.

2.2 Basic Syntax

;;; Comments start with a semi-colon, and extend to the end of the line.

;;; The ".include" directive will insert another source file.
.include "my_favorite_definitions.inc"

;;; Arithmetic is indicated by C-like statements that assign to "a".
a = 1.2*a + b ; generates: cab 1.2
a += 7 ; generates: 1ac 7 (same as: a = a + 7)

;;; Each statement must algebraically represent a single instruction
a = (a + 2)*(a - 2) ; generates: aac -4 (same as: a = a^2 - 4)
a = a^2 + b ; error: No such instruction exists.

;;; Multiple statements on a single line are separated with commas
a = a^2, a += b ; generates: aac 0, cab 1

;;; Variables in memory are indicated by an address in [square brackets].
a = [0x30] + 2 ; generates: 1mc 2 0x30
a *= [myaddr + 2] ; generates: amc 0 myaddr+2 (myaddr is a symbol)

;;; Constants can use all C math operators and most trig functions
a = (1/2)^(1/2) + 1/sqrt(2) + sin(pi*7/4) + e^(pi*i - ln(2)/2)

2.3 Piggybacking

;;; Assignments to "b" or [memory] are combined with the subsequent
;;; assignment to "a".
b = [myaddr] ; piggybacks below
a += 7 ; generates: l1ac 7 myaddr

;;; Multiple assignments can piggyback on a single instruction.
b = a ; piggybacks below

2.4. Indirect Addressing 9

[myaddr] = a ; also piggybacks below
a += 7 ; generates: sx1ac 7 myaddr

;;; If a piggyback is not possible, a dummy instruction is generated.
[myaddr] = a ; generates: s1ac 0 myaddr
a *= [otheraddr] ; generates: amc 0 otheraddr

;;; If optimization is on, "b = [memory]" piggybacks may be moved.
a += 7 ; generates: l1ac 7 myaddr
b = [myaddr] ; piggybacks above
a = a*[otheraddr] + b ; generates: amb otheraddr

2.4 Indirect Addressing

;;; Indirect addresses may be indexed by either
;;; Ib, which equals int(b * 2^12), or
;;; Fb, which equals int(b * 2^24)
a = [Ib] ; generates: lindi 0x3ff 0

; effective address: int(b * 2^12) & 0x3ff
a = [Fb] ; generates: lindf 0x3ff 0

; effective address: int(b * 2^24) & 0x3ff

;;; A fixed offset may be added to the index.
a = [myaddr + Ib] ; generates: lindi 0x3ff myaddr

; effective address: (myaddr + int(b * 2^12)) & 0x3ff

;;; A bitmask may be applied to the index as well. (Use parentheses!)
a = [myaddr + (Fb & 7)] ; generates: lindf 0x007 myaddr

; effective address: (myaddr + (int(b * 2^24) & 7)) & 0x3ff

;;; Indirect storing is the same, except backwards.
[myaddr + (Ib & 7)] = a ; generates: sindi 0x007 myaddr

;;; The I() and F() functions translate constants into the
;;; I and F integer representations.
a = I(0x40) ; same as: a = 0x40 * 2^-12
b = a
a = [Ib] ; effectively: a = [0x40]

;;; Assigning to "Ia" represents modulo 2^16 integer arithmetic.
Ia += Ib ; generates: addb

; effectively: a = ((Ia + Ib) & 0xffff) * I(1)

10 User’s Automatic

2.5 Flow Control

;;; Labels are placed near the start of the line, and end with a colon.
mylabel: a = a + b

;;; Local labels begin with a ~tilde. Their scope is bounded by global labels.
globallabel: ; start of ~locallabel’s scope
~locallabel: ; the name "locallabel" need be unique only within this scope
anothergloballabel: ; end of ~locallabel’s scope

;;; You may branch to a label unconditionally or conditionally.
goto mylabel ; unconditional branch
if (a < 0) mylabel ; branches only if "a" is negative

;;; Label-free flow control can be achieved with C-like blocks.
if (a > 0) { ; generates: skip N+Z 2
a = [pos] ; generates: cm 1 pos

} ; generates: skip T 4
elsif (a < 0) { ; generates: skip !N 2
a = [neg] ; generates: c 1 neg

} ; generates: skip T 1
else {
a = [zero] ; generates: cm 1 zero

}

;;; The "allow-destructive-if" option allows for complicated conditions,
;;; at the expense of implicitly clobbering "a".
.option allow-destructive-if
if ((a > 0) && (b < 2) || ([foo] == b && [bar]^2 != 1)) {
a = 1 ; evaluating the above condition requires modifying "a"
[myaddr] = a

}

;;; "break" will exit a block, whether it is part of an "if" or not.
{
a = [foo], b = [foo] ; generates: lcm 1 foo
if (a < [bar]) break ; generates: cma -1 bar, skip N 2 ---
a = b * [bar] + 1 ; generates: bmc 1 bar |
[foo] = a ; generates: s1ac 0 foo |

} ; (skips to here) <---------------------

2.6 Symbols

;;; Symbols are declared with the ".equ" directive.
MYSYMBOL .equ 2 * sqrt(2)

2.7. Data 11

;;; Statements may refer to symbols as if they were numbers.
a = b/2 + sin(pi*MYSYMBOL)

;;; Symbols may be defined in terms of other symbols.
OTHERSYMBOL .equ MYSYMBOL^2 - 1/2

;;; A symbol may be redefined with the ".set" directive.
a = MYSYMBOL ; same as: a = 2 * sqrt(2)

MYSYMBOL .set MYSYMBOL/4
a = MYSYMBOL ; same as: a = 1/2 * sqrt(2)

;;; An array of symbols is declared with the ".table" directive.
MYTABLE .table sin(pi/5), sin(pi*2/5), sin(pi*3/5), sin(pi*4/5)
a = MYTABLE(0) ; same as: a = sin(pi/5)
a = MYTABLE(3) ; same as: a = sin(pi*4/5)

;;; A local symbol is declared with the ".lequ" directive.
;;; By default, its scope extends to the end of the innermost block.
{
FOO .lequ 7
a = FOO ; same as: a = 7

} ; FOO’s scope ends here
a = FOO ; error: FOO no longer exists

;;; A local symbol’s scope can extend to an explicit label instead.
FOO .lequ 7, mylabel
a = FOO ; same as: a = 7

mylabel: ; FOO’s scope ends here
a = FOO ; error: FOO no longer exists

;;; The def() function tests whether a symbol is defined. (Use quotes!)
.if def("FOO") && def("BAR")
a += FOO + BAR ; only gets here if "FOO" and "BAR" both exist.

.endif

2.7 Data

;;; A variable in sample memory (0 - 0x3ff) is allocated with the ".ds" directive.
myvariable .ds ; declare variable
a = [myvariable] + 2 ; read from variable
[myvariable] = a ; write to variable

;;; Arrays of variables may be allocated at once.
myarray .ds 20 ; declare array of length 20
a = [myarray] ; read from head of array.
a = [myarray_TAIL] ; read from tail of array. Same as: a = [myarray + 19]
a = [myarray + myarray_LENGTH - 1] ; same as previous line.

12 User’s Automatic

;;; A variable in direct address memory (0x400 - 0x40f) is allocated with ".dv".
dirvariable .dv
dirarray .dv 4

;;; A local variable is allocated with ".ls" (or ".lv").
;;; By default, its scope extends to the end of the innermost block.
;;; When its scope is exited, its memory is deallocated and may be reused
;;; by other local variables.
{
foo .ls ; allocate local variable
[foo] = a ; use it for temporary storage
a = [bar] + b
a *= [foo] ; effectively: a *= [bar] + b

} ; foo’s scope ends here

;;; A local variable’s scope can extend to an explicit label instead.
foo .ls 1, mylabel ; allocate local variable
[foo] = a ; use it for temporary storage
a = [bar] + b
a *= [foo]

mylabel: ; foo’s scope ends here

;;; A variable’s name is a symbol, and may be treated like any other symbol.
myvariable .ds
a = I(myvariable) ; a = pointer to "myvariable", in I format.
b = a ; transfer pointer to "b".
a = [Ib] ; read indirectly from pointer. Effectively: a = [myvariable]

2.8 Conditional and Iterative Assembly

;;; Code between the ".if" and ".endif" directives will only be assembled
;;; if a given condition is true.
.if OFFSET != 0 && BLOCKSIZE != 0
a = a + OFFSET*BLOCKSIZE ; only use this statement if the addend is non-zero

.endif

;;; ".else" and ".elsif" are available, and nested ".if"s are possible.
.if ENTREE == PASTA
a = [linguini]

.elsif ENTREE == PIZZA
a = [deepdish]
.if not def("HOLD_THE_ANCHOVIES")
a += [catch_of_the_day]

.endif
.else
a = [salad]

2.9. Macros 13

.endif

;;; The ".repeat" directive repeats a block of code a given number of times.
.repeat 4 ; Multiply by 2^12. The 1K cannot multiply by more than
a *= -8 ; eight at a time, so we need to use four multiplications.

.endloop ; (-2^3)^4 = 2^12

;;; The ".for" directive iterates a local symbol over a given range.
.for OFFSET = 0 .. BUFFERLENGTH - 1
a += [buffer + OFFSET] ; add up the contents of an array in memory

.endloop
;;; You can’t name your index symbol "index" or "i". "index" is a Perl
;;; function, and "i" means sqrt(-1).

;;; The ".while" directive repeats a block of code while a condition is true.
MULTIPLIER .equ 12345 ; Multiply by 12345.
{
MULTIPLIER .lequ MULTIPLIER ; Create a local copy of MULTIPLIER.
.while MULTIPLIER < -8 || MULTIPLIER >= 8 ; Is it too big to multiply directly?
a *= -8 ; Multiply by as much as we can.
MULTIPLIER .set MULTIPLIER/(-8) ; Divide down the local MULTIPLIER.

.endloop ; Repeat until it’s small enough.
a *= MULTIPLIER ; Multiply by whatever’s left.

} ; Restore MULTIPLIER to 12345.

2.9 Macros

;;; Preprocessor-like macros may be defined as in C.
#define SCORE 20
#define YEARS_AGO(Pscore,Premainder) (Pscore*SCORE) + Premainder
a = [YEARS_AGO(4,7)] ; expands to: a = [4*20 + 7]

;;; The ".macro" directive defines a statement-block macro.
mymacro .macro

a = 2*a + 7
.endm

mymacro ; expands to: a = 2*a + 7

;;; Arguments are listed after the directive, and must begin with ‘$’.
mymacro .macro $multiplier, $addend

a = $multiplier*a + $addend
.endm

mymacro 2, 7 ; expands to: a = 2*a + 7

;;; A quoted string after the directive indicates a pattern macro.
;;; The macro will be invoked if a statement matches the string.

mymacro .macro "Please multiply by two and add seven."

14 User’s Automatic

a = 2*a + 7
.endm

Please multiply by two and add seven. ; expands to: a = 2*a + 7

;;; Pattern macros are lenient with whitespace.
Please multiply by two and add seven . ; expands to: a = 2*a + 7

;;; The pattern may contain arguments beginning with ‘$’.
mymacro .macro "Please multiply by $multiplier and add $addend."

a = $multiplier*a + $addend
.endm

Please multiply by 2 and add 7. ; expands to: a = 2*a + 7
mymacro 2, 7 ; This invocation still works, too.

2.10 Sections and Linking

2.11 Output Formats

User’s Manual

15

3
Invocation

bkasm is a command line utility. It provides no GUI or IDE; you simply offer it
plain text files and it returns the same to you. This may be unfamiliar if you
are used to programming Visually∗, but the command line approach has a number
of advantages: you can compose code using your favorite text editor and editing
style (instead of the author’s favorite), it allows for easy communication with other
tools, it fits well into a makefile, it fits well into version control systems, and it’s
portable. The disadvantage is that you don’t get a toolbar filled with rows of colorful
and inscrutably tiny buttons.

The formal usage syntax, as you might find at the top of a man page, is something
like:

% bkasm [OPTIONS] FILE [FILE...]

That’s not especially helpful, of course. All it means is that running bkasm involves
typing in the program name, followed by an optional list of a hyphen-prefixed op-
tions, followed by one or more filenames. What those OPTIONS and FILEs are sup-
posed to be is the topic of this entire manual, but especially this chapter.

∗Or being a Code Warlord.

17

18 Invocation

3.1 How bkasm Eats Your Words

Before we get into the details of how to invoke bkasm, a quick overview of bkasm’s
digestive process might be in order. It begins with you feeding in, via the command
line, one or more source files that you have written using your aforementioned fa-
vorite text editor.As the assembler chews through your source, it assembles together
one or more sections. A section is like an act or scene in a play, and represents a
functional partition of your code. A simple program might only use a single de-
fault section, while a complex project may contain dozens of sections, subsections,
and (sub)nsections. Each section may contain a number of chunks. A chunk is like
a character in a play, and represents a categorical partition of your code. There
might be a text chunk with executable code, and/or one or more data chunks that
represent different types of variable storage.∗ Once the assembler has digested your
source into sections and chunks, it passes them to the linker. The linker coalesces
the sections together and resolves all memory references. For a simple program,
the linker’s default behavior may be sufficient, but a complex project will typically
feed bkasm a linker script to give the linker some guidance. Once the sections
know where they and everything else are, they are passed on to the postlinker. The
postlinker breaks down the text chunks from lists of machine instructions into the
actual binary code that represents those instructions. In the final stage, this binary
data is passed off to an output format, which decides how to give this data back to
you.† Interestingly, you will typically ask the output format to package up the data
as source code again. Unlike the source that you started with, however, this code
is intended to be compiled in with host software, which will end up running on a
processor that controls bkasm’s target processor. In addition to the output format’s
output, bkasm can also generate a listing file. The listing file contains your source
code annotated with the assembled machine instructions, in case you are suspicious
(or merely curious) about well bkasm chewed your source. In the case of indigestion,
the listing file will also contain bkasm’s error messages and warnings, along with as
much of the code as it could keep down. These messages will be printed to your
terminal as well.

∗Many compiler suites do not make this section/chunk distinction. But bkasm was designed
with a Harvard architecture in mind (separate memory spaces for text and data), as well as for
an extremely memory-constrained environment that makes complex overlays a frequent necessity.
Conventional compiler suites don’t handle either situation very well.

†The reader is free to extend the “digestive tract” analogy to its (scato)logical conclusion. The
author will not.

3.2. Options 19

3.2 Options

Minimalists will be pleased that the entire process described above can be set in
motion by something as simple as:

% bkasm myfile.asm

Invoked in this way, bkasm reads and assembles myfile.asm as source code for the
Alesis 1K DSP, and produces a file called myfile.obj which is, curiously enough,
identical to what Alesis’s own 1kasm utility would produce.

However, bkasm is quite a bit more flexible than this example suggests, and its
behavior can be customized in quite a number of ways. So many, in fact, that
assigning single-letter command line switches to all of them, as is the custom, would
turn your makefile into a bewildering, illegible mess.∗ Instead, all of bkasm’s
options have descriptive names. On the command line, you can enable an option by
giving its name, preceded by a double-dash:

% bkasm --fix-all-bugs myfile.asm

For some options, merely naming them is not enough. To set an option to a value,
follow the option with an equals sign and the value:

% bkasm --bug-fixing-algorithm=achieve-sentience myfile.asm

If you specify the name without any value, the option is implicitly set to 1. Certain
options are enabled by default, or tag along when other options are specified. In
most cases, you may explicitly disable an option simply by setting it to zero:

% bkasm --taunt-user-when-bug-found=0 myfile.asm

Options aren’t just the domain of the command line, however. Since options
are bkasm’s general-purpose behavior-tweaking mechanism, it makes sense that you
should be able to set and change them from within a source file as well. The .option
assembler directive allows you to do just that. This, in turn, allows you to tweak
bkasm’s behavior over specific ranges of your source file, or keep all of your favorite
options in an external file which you .include. The .option directive will be
described on page 63. In the meantime, keep in mind that when this manual refers
to the --so-and-so option, you will often get at it with “.option so-and-so”
instead.

∗And would be impossible in any case, since there’s more than 52 of them.

20 Invocation

Since most options influence a very specific aspect of bkasm’s behavior, this man-
ual will mention these options in context, wherever the tweakable behavior is dis-
cussed. But for reference purposes, you might want a complete list of options as
well. That’s what Appendix D is for.

3.3 Command Line Switches

Every option can be accessed through its full name, but a certain handful of options
are important enough to warrant single-letter command line switches as well. Most
of these options deal with basic I/O—where and what the input and output files are
expected to be—with a few convenience switches that cover broad areas of bkasm’s
behavior. All switches are optional.

-a FILENAME (--listfile=FILENAME)

If given, bkasm will generate a listing file and save it as the specified filename.
There are a number of additional options for customizing your listing file; see Chap-
ter 7. If the filename is given as a single hyphen (“-”), then the listing file will be
written to the terminal’s standard output, which can be useful if you’d like to pipe
it elsewhere. If the filename is given as an equals sign (“=”), then bkasm will figure
out a good name for your listing file, based on the output or input filenames.

-l FILENAME (--linkfile=FILENAME)

If given, bkasm will read in the given file as a linker script, and the linker will do
its best to make sense of it. If not given, a simple default linker script is used. The
linker is covered in Chapter 6.

-F FORMATNAME (--format=FORMATNAME)

Specifies the output format that bkasm should use to generate the output file(s).
If not given, the hexdump output format will be used, which for simple programs
is compatible with the output generated by the 1kasm utility. Output formats are
covered in Chapter 8.

-o FILENAME (--outfile=FILENAME)

More or less specifies the file(s) that bkasm should create to represent your object
code. What exactly bkasm does with this option is dependent on the output format,
but for the hexdump format, it creates a file with the specified name, as you’d
expect. If not given, the output format will typically figure out an appropriate
output filename using the first source file on the command line.

-I PATHNAME (--include-path=PATHNAME)

This is a list option, which means that each time you specify it, you append a

3.3. Command Line Switches 21

new value to the list rather than overwriting the previous value. This option gives
bkasm places to look when the .include directive is used with a filename in <pointy
brackets>. The .include directive is covered on page 65.

-S SECTIONNAME (--outsection=SECTIONNAME)

This is also a list option, and specifies the names of sections that bkasm is expected
to output. This can be used in addition to the output linker option, although the
linker option is typically more convenient. The output linker option is covered on
page ??.

-D NAME=VALUE (--define-symbol=NAME=VALUE)

This is a list option as well, and allows you to define symbols directly from the
command line. You would typically use this to specify some sort of global behavior,
rather than, say, redefine the value of pi in your makefile. If no value is given, it
defaults to 1. Section 5.3 is all about symbols.

-W (--warn)

Enables the default set of warnings, which is highly recommended. You can gain
finer control over warnings with the --warn-* family of options; see page 22.

-O (--optimize)

Enables the default set of optimizations, which is also highly recommended. To
enable all optimizations, use the --optimize-all option. Specific optimizations can
be enabled or disabled with the expected notation: --optimize-company-cashflow
or --optimize-competitor-cashflow=0. This manual will cover each optimization
in context.

-k (--compatible)

Enables a set of options to help compatibility with source written for the 1kasm

utility. Some of these options make it difficult to use some of bkasm’s advanced fea-
tures, so it is recommended that you use this switch only when necessary. This op-
tion is equivalent to: --case-insensitive --allow-integer-constants --allow-
skip-count --allow-quote-mark-suffix

-n (--show-message-line)

In the event of an error or warning, tells bkasm to print out the offending line of
the source file after the error message.

-T TARGETNAME (--target=TARGETNAME)

Specifies the target that bkasm will assemble the source files for, which is usually
the processor where the object code will be run. If not given, the default target is
1k, which assembles for the Alesis 1K DSP. The 1K target is covered in Chapter 4;

22 Invocation

targets in general are covered in Section 9.2.

-L LINKERNAME (--linker=LINKERNAME)

Specifies the linker that bkasm will use for linking. If not given, the default linker
is the creatively-named linker linker. The default linker is covered in Chapter 6;
linkers in general are covered in Section 9.3.

3.4 Messages

So far, we’ve been covering how you talk to bkasm. And although bkasm is generally
a good listener, sometimes it has something it wants to say back to you. Messages
from bkasm come in two flavors: errors and warnings.

bkasm generates an error when it comes across a phrase in your source file that it
doesn’t understand, or if you ask it to do something that it can’t do. After telling you
about the error, bkasm will usually try to pretend that the problematic phrase never
existed, and continue making its way through your source. As with any compiler-
like interpretation system, sometimes this works and sometimes it leads to a cascade
of bogus, misleading error messages. In general, trust the first message, and only
consider the subsequent messages if they appear to be unrelated. If bkasm finds itself
generating too many error messages, it will simply give up and tell you to go fix
something. You can control bkasm’s tolerance level with the --max-errors=NUMBER
option.

bkasm generates a warning when it finds something that is suspicious, but not
necessarily wrong. bkasm will not editorialize about your code unless you ask it
to, but asking it to is highly recommended. The --warn option or -W switch will
enable a default set of warnings. You may enable all possible warnings with --

warn-all, although an overly paranoid bkasm can be an annoying bkasm. If you
know the name of a warning you are interested in, you may enable or disable it
individually: --warn-useless-block-of-code or --warn-grammatical-errors-

in-comments=0. If there’s a warning that you think is serious enough to be treated
as error, you can ask for that by setting the option to “error”: --warn-rabid-

doberman-behind-you=error. If you prefer to treat all warnings as errors, you can
use the aptly-named --warnings-are-errors option. Of course, it’s hard to refer
to warnings individually without knowing their names, so the --show-error-name

option will report errors and warnings along with their internal names.

For either type of message, bkasm will tell you what source file inspired the
message, followed by a line number in parentheses when applicable, followed by the
type and meat of the message:

3.4. Messages 23

shoppinglist.asm(6): error: Apricots are out of season. Perhaps you would
like oranges instead?

This format is similar to that used by other compiler tools, which means that text
editors which think they’re smart enough to jump to error lines can probably parse
bkasm’s messages without much trouble. By default, bkasm word-wraps messages
around 78-column boundaries for easy reading. If you would like to specify your
own window width, use the --message-width=NUMBER option. To prevent bkasm

from doing any word-wrapping at all, set this option to zero.

If you are using included files or macros, bkasm will give you the entire stack of
location information, so you can pinpoint exactly where the error occurred:

macro fruit(2) in macro produce(7) in supermarket.inc(15) in
shoppinglist.asm(6): error: Apricots are out of season. Perhaps you would
like oranges instead?

4
The 1K Target

The Alesis 1K is a DSP processor.∗ All this really means is:

• It’s good at multiplying and adding numbers.

• It’s not good at much else.

The 1K epitomizes the essence of a DSP processor. It can perform almost fifty
million unpipelined fixed-point multiplies and additions per second, an impressive
feat for a small, low-cost processor. But it knows only one trick, and that’s it.

4.1 Processor Description

The 1K’s instruction memory holds 1024 instructions, and the processor executes all
1024 of them, in order, once every 21 µs.† Because this architecture forbids looping
constructs and subroutines, and makes time and space resource constraints explicit

∗This stands for “Digital Signal Processing processor”. You might use a DSP processor to
calculate an FFT transform with a low SNR ratio, but not to verify a PIN number in an ATM
machine.

†The 1K was designed for audio applications, and 21 µs is the period between samples of a 48
KHz signal.

25

26 The 1K Target

and equivalent, the programming experience is a far cry from conventional software
design.

The 1K contains 1040 words of data memory for variable storage, each 28 bits
wide. To aid in creating delay lines, the processor provides the option to treat 1024
of these words as an implicitly-rotated circular buffer.

There are two 28-bit local registers which can be read and written more readily
than data memory. The a register, or the accumulator, is where the results of most
operations are stored. The b register functions as the accumulator’s sidekick.∗

All registers and data memory use a S3.24 fixed-point representation. This means
that each 28-bit word is interpreted as a sign bit followed by three bits to the left
of the decimal point and 24 bits to the right. This in turn means that, as far as
the multiplier is concerned, values in the 1K are limited to the range −8 ≤ x < 8,
with 24-bit fractional precision. The operands of some instructions use different
representations, such as S3.18 or S3.8. Although all numbers are in S3.24 format
internally, the multiplier truncates one of its inputs to S3.18 before multiplying.

The 1K is typically used in a coprocessor position, babysat by a host microcon-
troller. Communication between the two generally consists of the host reading and
writing directly into the 1K’s address space using the 1K’s microprocessor inter-
face. The 1K also provides four input and four output serial ports for data transfer,
but these are usually used for communicating with data converters and other DSP
processors.

4.2 Machine Instruction Syntax

This section will describe the instruction syntax used in Alesis Semiconductor’s
processor documentation and understood by their 1kasm utility. This syntax forms a
very thin layer over the underlying machine language, and requires working at a level
close to the internals of the processor. Of course, what is easy for a machine to read
can be quite a bit harder for a human. Writing programs with machine instructions
is difficult and error-prone, and reading them (especially programs written by others)
is somewhat like trying to understand the intricacies of a hardware design by staring
at the printed circuit board.

Although there is no need to learn how to program with this syntax, it may be
worthwhile to gain a basic familiarity with the style in order to understand the
1K’s capabilities and limitations. The syntax will also be used in this manual when

∗There’s another alphabetic operand known as u, although calling u a third register is a bit
like referring to your car’s engine compartment as a third passenger space.

4.2. Machine Instruction Syntax 27

describing how bkasm translates your source into machine instructions, and your
listing files (as well as the occasional error message) will make reference to machine
instructions in this way.

Most 1K instructions involve multiplying two numbers, adding a third, and writ-
ing the result to the accumulator. Each of the three participants on the right-hand
side of this equation can be one of five things: a, b, u, a constant, or a location in
data memory. In most cases, an instruction may reference no more than one con-
stant and one memory location. This leads to a syntax where you spell out exactly
what you want multiplied and added, and then specify the constant and/or memory
location referenced by the instruction. For example:

amc 0.125 17

multiplies the Accumulator by a Memory location, and adds a Constant. The con-
stant is 0.125, and the memory location is 17.

cb 0.125

multiplies a constant by the b register, and the adder doesn’t get to play this round.
The constant is 0.125, and no memory location is given because none is referenced.

Every instruction of this form writes its result to the a register. However, the 1K
has the ability to do certain types of data transfers in parallel with these operations,
and these are represented by a prefix on the instruction name. There are three of
these prefix operations: Storing, Xferring, and Loading.

scab 0.125 17

will Store the accumulator into memory location 17. It then multiplies 0.125 by the
accumulator, adds b, and writes the result back to the accumulator.

xcma 0.125 17

will transfer (Xfer?) the accumulator into the b register. It then multiplies 0.125
by the memory location 17, adds a, and writes the result back to the accumulator.

l1ac 0.125 17

will Load the value at memory location 17 into the b register. It then multiplies 1
by a, adds the constant 0.125, and writes the result back into a.

If this all sounds delightfully orthogonal, you’re in for a disappointment. The 1K
provides only fifty instructions of this form, which aren’t nearly enough to cover all

28 The 1K Target

of the permutations that this syntax implies. But to make up for this, the proces-
sor knows some additional useful tricks. These include integer arithmetic, bitwise
masking, indirect addressing, conditional forward branching, and approximations of
logarithmic and exponential functions. The machine instructions for these opera-
tions are covered in the processor documentation. You can also find a quick reference
for all machine instructions in Appendix A.

bkasm fully supports this syntax, and programs written for the 1kasm utility
should assemble in bkasm without a hitch.∗ Furthermore, the operands of your
instructions need not be simple constants or memory references, but may be full-
blown expressions, as described in Section 5.2. For example:

amc e^(sin(pi*2/3)-sqrt(2))+1.7 buffer+round(0,OFFSET/BLOCKSIZE)

The trick here, though, is that operands are delimited by whitespace. So you either
have to cram each operand into a spaceless string of characters, as above, or use
parentheses to keep the spaces from leaking out:

amc e^(sin(pi * 2/3) - sqrt(2))+1.7 (buffer + round(0, OFFSET / BLOCKSIZE))

For most instructions, the constant operand is assumed to be a real number in
the range −8 ≤ C < 8, and bkasm takes care of converting this number into the par-
ticular fixed-point representation that the instruction likes. If you’d like to be able
to explicitly specify a literal integer constant to be used directly as the fixed-point
representation, you will need to enable the --allow-integer-constants option.†

With this option enabled, if you write a constant that uses a radix designator (for
example, “$f00”, “0xfoo”, or “%01010”), the integer will be used directly as the
fixed-point operand. This is emphatically not recommended because different in-
structions have different fixed-point representations, and bkasm is better at keeping
track of them than you are.

.option allow-integer-constants
l1ac 0x100000 foo ; adds 4 to accumulator
1ac 0x100000 ; adds 1/16 to accumulator

This option does not apply to the indirect addressing instructions nor “andc”, be-
cause they already assume an integer operand. (This is indicated by an “I” operand
in Appendix A.) They also assume that you know what you’re doing.

∗The --compatible option or -k command line switch may occasionally be needed to ensure
hitchlessness. But this option deals more with the idiosyncrasies of 1kasm than with the 1K
instruction syntax itself.

†This is one of the options that --compatible gives you.

4.3. Assignment Statements 29

In general, writing machine instructions in your source should be treated with the
same reserve given to inlining assembly into a C file—do it only when you want to be
perfectly explicit about what the processor should be doing. It is not uncommon to
write 1K code that is intended to be dynamically modified, so it may be reasonable
to write certain lines as machine instructions if you plan on fiddling with them at
runtime.∗ But the readers and maintainers of your code will thank you if you keep
the literal instructions to a minimum.

4.3 Assignment Statements

The purpose of a DSP processor, first and foremost, is to do math. If you are using
a 1K, that almost certainly implies that your application has a set of mathemati-
cal equations that need to be solved. Thus, it makes sense that bkasm’s preferred
instruction syntax closely follows the precedents set by high-level mathematically-
capable computer languages, which in turn were inspired by modern algebraic no-
tation.

Statements

Writing an equation in bkasm is very similar to writing it in C, or Matlab, or seventh-
grade algebra class:

a = 2*a - 1.5

This is an example of a statement, and it does exactly what you’d expect:† it
multiplies a by two, subtracts 1.5, and puts the result back in a. In order for it to
do this, of course, bkasm must convert it to a more 1K-friendly form:

cad 2 -1.5

But you typically don’t need to know this, any more than you typically need to
know the assembly output of your C compiler. (And if you do want to know it,
that’s what the listing file is for. See Chapter 7.)

Unlike in C, you need no semi-colon to terminate a statement; a simple newline
will suffice. If you wish to put multiple statements on a single line, you may delimit
them with commas:

∗But if you are interested in swapping around more than just an instruction or two, you probably
should be using overlays. See Section 5.13.

†Provided that you have experience with C, or Matlab, or seventh-grade algebra.

30 The 1K Target

a = b * 2, a = a + 4, b = a

You usually shouldn’t, however. “One statement per line” is a universal guideline
in the software industry because it makes things easy to read, especially if you are
scanning code quickly. Nevertheless, there are a couple good reasons why you might
want to put multiple statements on a line, and we’ll get to those.

Elements

The purpose of every statement is to express a desired relationship among two or
more elements. In the 1K universe, there are five basic elements: the accumulator,
the b register, the u pseudo-register, memory locations, and constants. The first
three are referred to simply by their names:

a = b + u

A memory reference is notated by writing its address, or any expression that resolves
to an address, in square brackets. For example,

a = [sqrt(3*3 + 4*4)] ; resolves to: a = [5]

refers to the data stored at memory location 5. A constant is simply written as a
real number, or any expression that resolves to a real number:

a = e^(pi*i) ; resolves to: a = -1

The details of expressions are covered in Section 5.2.

Except for the latter, bkasm allows you to assign to all of these elements, subject
to the idiosyncrasies of the processor. The next few sections will discuss each of the
elements in detail, and describe how to assign to them.

4.3.1 The Accumulator

Almost all of the 1K’s instructions dump their results into the accumulator. Thus,
anything more complicated than a simple data transfer must be accomplished through
an assignment to the a register.

4.3. Assignment Statements 31

Forms

You do arithmetic by assigning an algebraic expression to a, as shown above. The
full details of how expressions work must wait until Section 5.2, but for now, you
can trust that the operators and their precedences are similar to those in C.∗ You
get one bonus operator as well—Matlab’s ^ exponentiation operator may be used in
addition to C’s ** operator.

As in C, you may combine an arithmetic operator with the assignment opera-
tor when the left operand is the assignee. This is encouraged when it enhances
readability, since large sections of your code will typically consist of these sorts of
transformations on the accumulator.

a += 1 + sqrt(2) ; same as: a = a + (1 + sqrt(2))
a -= 1 - sqrt(2) ; same as: a = a - (1 - sqrt(2))
a *= pi/2 + ANGLE_OFFSET ; same as: a = a * (pi/2 + ANGLE_OFFSET)
a /= 4 ; same as: a = a / (4), or: a = a * 0.25
a ^= 2 ; same as: a = a ^ (2), or: a = a * a
a = a^2 ; more readable way of writing previous line

The familiarity of this syntax may sometimes be misleading. bkasm is not a
compiler. Each arithmetic statement you write must correspond directly to a single
machine instruction. If you write a long, complicated expression, bkasm will not
break it down for you into machine-sized chunks—it will merely complain that the
1K doesn’t know how to do what you are asking of it. bkasm does not absolve you
of the responsibility of learning your processor.

It does, however, make it much easier. Algebraic expressions tend to stick in your
head better than acronyms because they correspond more closely to your mathemat-
ical thought process as you code. The types of expressions that the 1K can handle
are referred to as forms. You will find the complete list of forms in Appendix B.
You will most likely also find the process of learning and applying these forms to be
an order of magnitude faster than learning machine instructions. Even veteran 1K
programmers are encouraged to suspend their instruction-level knowledge so as to
approach the forms with a clean slate.

Forms are semantic constructs. Syntactically, you may express a given form in
almost any algebraically-equivalent manner. bkasm’s algebraic parser is, in general,
smarter than you think it is. The following statements are equivalent:

a = a^2 - 4
a = (a + 2)*(a - 2)

∗Actually, they are identical to those in Perl, since statements are evaluated directly as Perl
expressions. Perl’s operators, in turn, are similar to those in C.

32 The 1K Target

a = (a + b + 1)^2 - 2*(a + 1)*(b + 1) - (b + 2*i)*(b - 2*i) + 1
aac -4

All four refer to the “a ∗ a + C” form, and generate the machine instruction that
implements the assignment a← a2 − 4. The first statement is, of course, easiest to
read, but the second and third will at least impress all your friends who think they
know what an assembler is. The fourth is neither legible nor impressive, and will
only make your friends pity you.∗

Addition

All arithmetic instructions involve both a multiply and an addition. Thus, when
you just ask for straight addition, bkasm will implicitly tell the 1K to multiply by 1.

a = b + [data] ; generates: cmb 1 data

When you write a statement that adds a constant, it may not be immediately
obvious whether that constant gets 24 or 18 (or even 8) bits of fractional precision.
Precision is given as part of the form in Appendix B, but different instructions
provide different amounts of precision, and due to piggybacking and other concerns,
you can’t always be sure of which instruction you’re going to get:

a = a + 1/3 ; 1/3 gets 24 bits of precision
a = 2*a + 1/3 ; 1/3 gets 18 bits of precision
a = 0.2*a + 1/3 ; 1/3 gets 8 bits of precision
[data] = a
a = a + 1/3 ; 1/3 gets 18 bits of precision

This is, on the whole, a good thing, since it’s better to let bkasm manage your
precision when you don’t really care. When you do really care, bkasm provides
ways of letting you tell it just how many bits you need for particular constants and
symbols. Not only will bkasm actively work towards giving you that precision, but
it will even generate an error if it can’t. See Section 5.5.

Multiplication

The 1K’s multiplier is probably the reason why you are using the 1K in the first
place, so it might be worthwhile to take the time to get to know it. The multiplier’s

∗As written, there actually is a small semantic difference—the fourth line is not receptive to
piggybacking by default. But that’s getting ahead of ourselves. See page 38.

4.3. Assignment Statements 33

biggest quirk is its asymmetry with regards to the precision of its inputs. The 1K is
not capable of doing a full S3.24 x S3.24 multiply; instead, one of the inputs must
be truncated to S3.18 format. Those six bits can make a big difference, so when
you request a multiply, it is important to know which element gets the 24-bit slot
and which the 18-bit slot. This is determined by a fixed ordering called precision
precedence, and you will never become an expert 1K coder until you commit this
ordering to heart:

Precision Precedence: u, [M], a, b, C

The element with lower precedence always gets truncated to 18-bit precision during
a multiply:

a = a * u ; u is S3.24, a is S3.18
a = a * [data] ; [data] is S3.24, a is S3.18
a = a * a ; one copy of a is S3.24, the other is S3.18
a = a * b ; a is S3.24, b is S3.18
a = a * 1/3 ; a is S3.24, 1/3 is S3.18

One corollary of this is that you can never multiply by a S3.24 constant. Constants
are lowest on the totem pole, so they always get the 18-bit slot. Another corollary
is that memory references and u always get the 24-bit slot. (You cannot multiply a
memory reference by u, so they actually have the same effective precedence.)

When you run into a situation where the 1K’s precision precedence is the opposite
of what you want, there are a few tricks you can use to turn it around. See page 43.

A second interesting aspect of the 1K’s multiplier is that, despite what the official
documentation claims, it does not produce a S3.24 result. The result is, in fact, in
S4.24 format, and is not clipped to S3.24 until after the subsequent addition. For
example:

a = 4
a = 3*a - 7 ; results in: a = 5

The final result is 5, which is correct, even though the intermediate result coming
out the multiplier is 12, a number which is normally too much for the 1K to handle.
Of course, if the final result after the addition is out of range, it will be clipped and
the overflow flag will be set. Overflow will be covered on page 50.

Integer Arithmetic

The 1K is at home with saturating 28-bit fixed-point math. But sometimes you
would rather it emulate the vintage arithmetic behavior of, say, the 8088. The 1K

34 The 1K Target

is capable of performing classic 16-bit integer arithmetic, and this can occasionally
come in handy for pointer manipulation, or with algorithms that rely on the modulo-
216 behavior of a standard integer ALU.

When the 1K is thinking in terms of integers, bit 12 of the 28-bit accumulator
is treated as the least significant bit, and lower bits are ignored. This conveniently
lines up the sign bit with the top of the accumulator, so sign tests still work.

Syntactically, integer arithmetic in bkasm looks similar to normal arithmetic,
except with more “I”s. The pseudo-elements Ia and Ib refer to the a and b registers,
but tell bkasm to think of the integer representation instead of fixed-point. The 1K
supports three integer operations, which are written as:

Ia = Ia + Ib ; integer add: a + b
Ia = Ia - Ib ; integer subtract: a - b
Ia = Ia * Ib ; integer multiply: a * b

In the case of multiplication, the accumulator is set to the lower 16 bits of the
result. If you want the upper 16 bits instead, you can use plain old fixed-point
multiplication.

As an aid in defining integer constants and otherwise massaging numbers into
the 1K’s integer representation, bkasm defines a function called I():

I(x) = x * 2^-12

This function shifts an integer argument down to its proper place in the 1K’s integer
representation. That is, I(1) represents a 1 when the 1K is thinking in terms of
integers.

As an example, here is how you might implement a linear congruence generator,
which is a particularly efficient random number generator that relies upon modulo
arithmetic:

; The formula for this linear congruence generator is:
; next_random_number = ((previous_random_number * 25173) + 13849) mod 2^16

b = [random_number] ; b = previous random number
a = I(25173) ; a = integer constant 25173
Ia = Ia * Ib ; do the integer multiplication

b = a ; b = result of multiplication
a = I(13849) ; a = integer constant 13849
Ia = Ia + Ib ; do the integer addition

[random_number] = a ; store new random number

4.3. Assignment Statements 35

The output of this random number generator goes through all 216 integers, so it
does not need to be seeded. Since the most significant bit is the same in both
the 1K’s integer and fixed-point representations, [random_number] appears from a
fixed-point perspective to have a uniform distribution over the range −8 ≤ x < 8.
White noise enthusiasts, take note.

In case you need a conceptual anchor for this integer craziness, you can think
of I as somewhat analogous to the prefix “milli”. If you set a to “1 meter”, then
Ia means “a, as expressed in millimeters”, or in this case, 1000. Correspondingly,
I(1000) means “1000 millimeters”. There are three equivalent ways to set a to this
value:

a = I(1000) ; "a equals 1000 millimeters"
Ia = 1000 ; "a, as expressed in millimeters, equals 1000"
a = 1 ; "a equals 1 meter"

Of course, “milli” means 10−3 while our I means 2−12, but it’s the same idea.

We’re not through with Ib and I() yet; they will make a reappearance when we
come to indirect addressing on page 44.

Masking

The 1K provides one bitwise logical operation, and that is AND. You may AND the
accumulator with the b register:

a = a & b

or with a constant mask:

a = a & 3.75

In the latter case, the constant is interpreted as a fixed-point number, just as with
any arithmetic operation. It might seem weird to write a mask as a real number
rather than an integer. That’s okay, because it is weird. But it keeps the notation
consistent, and more importantly, it allows you to easily do the sorts of things you
would want to do with masking:

a &= -0.25 ; round down to multiple of 0.25
a += 0.25/2, a &= -0.25 ; round to nearest multiple of 0.25
a &= 8 ; isolate sign bit
a &= I(0xffff) ; isolate 1K’s 16 "integer bits"
a &= 1 - F(1) ; isolate fractional part of fixed-point number

36 The 1K Target

The latter makes use of another one of bkasm’s handy predefined functions:

F(x) = x * 2^-24

This function shifts down an integer argument so its least significant bit lines up
with the least significant bit of the 1K’s 28-bit word. If you would rather forget
about this fixed-point business and express your mask as a straightforward 28-bit
integer, F() is what you need:

a &= F(0x00fff00) ; isolate middle twelve bits

The one spot of awkwardness in writing masks as real numbers is that you can’t
directly write an expression that ANDs or ORs them with each other, because
bkasm’s bitwise operators∗ only work on integers:

a &= (8 | F(1)) ; WRONG! F(1) is truncated to zero.

You can, of course, add them together if that makes sense:

a &= (8 + F(1)) ; correct: isolates highest and lowest bits

However, once you start composing fancy masks like this, you’re probably better off
writing them as integers anyway:

a &= F(0x8000000 | 0x0000001) ; isolate highest and lowest bits

Incidentally, the 1K provides no OR operation. In many situations, the desired
effect can be achieved through simple addition. If you want a true bitwise OR, your
first inclination might be to try DeMorgan’s Rule:

; bitwise OR using DeMorgan’s Rule: a | b = ~(~a & ~b)
a = -[first], a -= F(1) ; a = one’s complement of [first]
b = a ; b = ~[first]
a = -[second], a -= F(1) ; a = one’s complement of [second]
a = a & b ; a = ~[first] & ~[second]
a = -a, a -= F(1) ; a = [first] | [second]

But a more efficient implementation is possible by throwing in some addition:

; bitwise OR using logical/arithmetic hybrid: a | b = (a & ~b) + b
b = [first] ; b = [first]
a = -[second], a -= F(1) ; a = one’s complement of [second]
a = a & b ; a = [first] & ~[second]
a += [second] ; a = [first] | [second]

∗Or rather, Perl’s bitwise operators.

4.3. Assignment Statements 37

Note that the one’s complement technique shown above does not work for a value of
-8, or F(0x8000000), because the multiplier will saturate before performing a true
two’s complement negation. Bitwise logic isn’t the 1K’s strong point—handle with
care.

4.3.2 Memory

The 1K has an 11-bit address space for data memory. The first half of that, from 0 to
0x3ff, consists of sample memory, which is basically just 1024 places to store things.
Above that, from 0x400 to 0x40f, is direct address memory, which is basically 16
more places to store things. The difference is that, when the 1K is in circular
addressing mode, sample memory is rotated up one word each sample period, while
data written to direct address memory remains where you put it. When circular
addressing is off, the only significant difference is that you can’t get to direct address
memory with indirect addressing. From 0x410 to 0x417 are the serial I/O ports,
and above that are a few miscellaneous ports and status words that the 1K designers
felt like memory-mapping.

It’s nice to know your way around the memory map; however, you should rarely,
if ever, refer to a memory address as a literal constant. Not only are literal addresses
hard to read, but bkasm is simply better at memory allocation than you are. bkasm
provides assembler directives to allocate memory∗ (see Section 5.7) and a linker to
place that memory (see Chapter 6). These are good tools—use them. As for ports
and status words, the standard 1K include file defines symbols for all of these (see
Section 5.1). Using standard symbols allows you to share your code with others.

You have already seen examples of how to read from data memory:

a = [my_favorite_memory_location] ; read from data memory

Given that, the syntax for writing to data memory is exactly what you’d expect:

[my_favorite_memory_location] = a ; write to data memory

What you might not expect, however, is that the entirety of the 1K’s memory-
writing capability is represented by the above example. The only element that may
be assigned to a memory location is the accumulator.

This seems easy enough. And if you are just learning the basics of 1K program-
ming, it is easy enough, and that’s all you need to know. But if you have some 1K
experience, the line of code above might appear a little suspicious. The 1K does

∗And it can even deallocate it when you’re done with it.

38 The 1K Target

not have a dedicated machine instruction for writing to memory. Instead, a store is
done in parallel with an arithmetic operation. So a veteran 1K programmer might
balk at seeing an isolated store—it cries out for an arithmetic instruction to ride on.

Piggybacking

bkasm doesn’t balk when it comes to a memory write, but it doesn’t immediately
generate an instruction either. Instead, it waits for the next statement to see if
it can piggyback. Any time you assign to an element other than the accumulator,
bkasm tries to combine that assignment with a statement that does assign to the
accumulator.

[sunken_treasure] = a
a += 4*b ; generates: scba 4 sunken_treasure

If it cannot do this while maintaining the correct semantics of your program and
respecting your precision preferences, it generates a dummy instruction to piggyback
on.

[this_party_needs] = a ; generates: s1ac 0 this_party_needs
a = [rock_da_mic] + 2 ; generates: 1mc 2 rock_da_mic

bkasm’s automatic piggybacking has a number of advantages: it’s intuitive and
easy to read, it lets you write code quickly without worrying about manually com-
bining operations, you can copy and paste code cleanly, and bkasm will sometimes
notice combinations that you wouldn’t. The disadvantage, especially from a tradi-
tional assembly perspective, is that one line of code no longer corresponds directly
to one machine instruction. If you are tight on code space and need to be able to
visualize the machine instructions for optimization, you might want to write the
piggybacker and piggybackee on the same line to emphasize their oneness:

[wench] = a, a = a*u + e ; generates: sauc 2.718 wench

If a store is followed by a literal machine instruction instead of an assignment
statement, bkasm will not normally piggyback on it, since it assumes you know what
you’re doing. If you think that bkasm knows what you’re doing better than you do,
you can allow a piggyback by prefixing the instruction with an asterisk. (Think
“wildcard”.)

[picking_at] = a
*cab 4 ; generates: scab 4 picking_at

4.3. Assignment Statements 39

If you think that bkasm is responsible enough to piggyback on any and all machine
instructions, you can tell it so with the --piggyback-literal-instructions op-
tion. With this option enabled, bkasm will effectively see stars in front of all of the
instructions you write.

4.3.3 The b Register

The b register functions as a handy place to store data when you don’t want to go
through the hassle of writing to memory. It has a lower precision precedence than
the accumulator, so it’s useful in multiplications when the accumulator must keep
its full 24-bit precision. The b register is also the main player in indirect addressing,
as well as the input for the exponential and logarithmic functions.

There are two elements that you may assign to b: the accumulator and a memory
location. The first is straightforward:

b = a

Again, there is no dedicated machine instruction for this operation. Instead, the
statement requests a piggyback, much like the memory store statements above.

b = a
a -= 7 ; generates: x1ac -7

In some cases, a memory store and an accumulator transfer can both piggyback on
the same instruction:

b = a
[foo] = a
a = a^2 - 7 ; generates: sxaac -7 foo

As with the store, a dummy instruction will be generated if no piggyback is possible.

b = a ; generates: x1ac 0
a = b^2 + 1 ; generates: bbc 1

Syntactically, assigning a memory location to b is nothing surprising:

b = [box_o_chocolates]
a = a^2 ; generates: laac 0 box_o_chocolates

40 The 1K Target

However, this particular operation is fundamentally different than the other two
piggybacks mentioned so far. Because store and transfer piggybacks read from
the accumulator, and every arithmetic instruction writes to the accumulator, these
piggybacks must happen immediately. In order to maintain the correct semantics
of the program, they can piggyback only on the subsequent statement. Anywhere
else, they would grab the wrong value from the accumulator.

The load piggyback, however, does not care about the accumulator; its business
is only between data memory and the b register. Neither of these elements are
necessarily used on every instruction, which implies that bkasm might be able to
slide your load request to somewhere else in the code while keeping your program
functionally equivalent. If you let it, that’s exactly what bkasm will do.

Optimized Load Placement

If the --optimize-load-placement option is not enabled, loads behave like stores
and transfers; they either piggyback on the subsequent statement or generate a
dummy instruction. But if you do enable this option (or the -O command line
switch), bkasm will happily move the load piggyback up or down in the code in
order to find the best possible home for it. As an example, here is a sine oscillator
which you may remember from an earlier chapter:

; "modified coupled form" sine oscillator
a = -0.1 * [sine] ; generates: lcm -0.1 sine <-----
a += [cosine] ; generates: cma 1 cosine |
[cosine] = a ; piggybacks below |
b = [sine] ; piggybacks above! ------------------
a = 0.1 * a + b ; generates: scab 0.1 cosine
[sine] = a ; generates: s1ac 0 sine

bkasm doesn’t just look for any piggybackable instruction; it takes into account the
precision downgrade that some piggybacks cause, and tries to avoid that if it can.

b = [call_a]
a += p(24, 1/3) ; generates: 1ac 0.3333

; (can’t piggyback here; 24-bit precision required)
a += 1/3 ; generates: 1ac 0.3333

; (can piggyback here, but would rather not)
a += 1/4 ; generates: l1ac 0.25 call_a

; (best piggyback target; no sacrifice in precision)
a = 2*a + b ; generates: cab 2

All else being equal, bkasm will go ahead and piggyback on the statement subsequent
to the load statement, so you do get some measure of control as to where the load
goes. If no piggyback is possible, a dummy instruction must be generated.

4.3. Assignment Statements 41

This optimization is done safely, of course; the load will never be moved past a
statement that reads or writes the b register, or writes to the memory location that
you are loading from, or otherwise performs an action that would affect the func-
tionality of the code. You can’t even fool bkasm with literal machine instructions,
because bkasm knows what they mean too:

a += 1 ; can’t move piggyback up here,
lindi 0x3ff buffer ; because the "lindi" instruction uses the b register!
b = [buffest] ; must generate dummy instruction: l1ac 0 buffest
a += b

When in doubt, bkasm errs on the side of caution:

a += 1 ; generates: 1ac 1
if (a >= 0) positive ; generates: skip !Z 1
a = 1 - a ; generates: cad -1 1

positive:
b = [buffest] ; generates: l1ac 0 buffest
a += b ; generates: cab 1

Even though you can see that moving the load up to the “a += 1” statement is
safe, bkasm isn’t smart enough to do that∗ because it’s too scared to look past the
branch target.

This optimization is highly recommended. bkasm will frequently find load-friendly
nooks and crannies that you simply wouldn’t notice, and it can optimize across
macro boundaries in ways that you couldn’t possibly notice. More importantly, it
allows you to write the statement that assigns to b right next to the statement that
uses that value of b, which makes your code much easier to read and much less likely
to break when you copy a section and paste it somewhere else. The disadvantage is
that your optimized load may sometimes be difficult to spot in the listing file, since
there’s no telling where bkasm might have moved it to.

4.3.4 The u Register

The u pseudo-register is a funny animal. Funny enough that if you’re a beginner,
still struggling with the difference between S3.24 and S3.18 formats, you might want
to consider skipping this section and pretending that u doesn’t exist. Go on. We’ll
tell you about u when you’re older.

Consider, for a moment, a microprocessor with a single-cycle multiplier. On
every clock cycle, this multiplier latches in two inputs, feverishly multiplies them,

∗Yet.

42 The 1K Target

and produces an output. Now, suppose that on one particular clock cycle, the
multiplier grows weary of life’s burden and decides not to bother latching in one
of its inputs. As a result, the other input ends up getting multiplied by whatever
happened to be latched in on the previous clock cycle.

The designers of the 1K apparently thought that this sort of behavior would be a
feature.∗ It appears in the programming model as a pseudo-register named u. Every
arithmetic instruction implicitly sets u to the multiplicand with the higher precision
precedence. This means, every time you assign to a, you are modifying u as well.

a = 2*b ; implicitly assigns: u = b
a = a*b + 1 ; implicitly assigns: u = a
a = a*[blorf] + 1 ; implicitly assigns: u = [blorf]

u may then be multiplied by something else. Since u has the highest precision
precedence, any statement that uses u ends up setting u to itself, effectively leaving
it unmodified.

a = 2*b ; implicitly assigns: u = b
a = a*u + 5 ; effectively: a = a*b + 5
a = 5*u + b ; effectively: a = 5*b + b

bkasm allows you to assign to u directly. This functions as a strange sort of
piggyback, and what exactly it means depends on the statement following the as-
signment.

After an assignment to u, if the subsequent statement actually uses u, then the
effect is pretty much what you would expect from an assignment—an instruction
is generated that copies the assigned value to u while leaving the other registers
unmolested:

u = [blorf] ; generates: cma 0 blorf
; u is now [blorf], but everything else is the same

a = a*u + 4 ; generates: sauc 4 null_output
; effectively computes: a = a*[blorf] + 4

On the other hand, if the subsequent statement is an assignment to a that does
not use u, then bkasm will assemble that statement in such a way that the statement
effectively assigns the requested value to u. For example, this can resolve ambiguities
with simple addition statements, where it isn’t clear which addend is which:

a = a + b ; what is u? who knows!
u = a, a = a + b ; sets u to a: cab 1
u = b, a = a + b ; sets u to b: scba 1 null_output

∗Or at least, cheap and easy to implement.

4.3. Assignment Statements 43

Furthermore, if it is not possible to assemble the statement so that it gives you the
u you want, bkasm generates an error. It is recommended that whenever you are
planning to use the u output of a statement, you always prefix it with an explicit
assignment to u:

u = a, a = a^2 + 1 ; explicitly indicate that u is set to a
a = u*a + 1 ; effectively does a = (a*a + 1)*a + 1

This makes your code much easier to follow, and should you accidentally change the
statement so it produces a different u, you’ll get an error message instead of a bug:

u = a, a = b^2 + 1 ; error: the statement cannot set u to a
a = u*a + 1

If the statement after the u assignment is not an arithmetic assignment at all,
bkasm takes the first meaning, and generates an instruction that implements the u
assignment.

Technically, the “dual” behavior of u assignments is no different than any other
piggyback, which can either generate a instruction or modify the subsequent state-
ment depending on what that statement looks like. But in practice, you use the two
behaviors in different situations, so it helps to make a conceptual distinction. In
fact, when you are aiming for the second type of behavior, it is actually encouraged
to place the u assignment and its target statement on the same line of code, as
shown above. This prevents the statement from getting detached from its predicate
when you copy and paste, and makes it perfectly clear to your readers (and you)
that the two phrases are part of the same sentence.

There aren’t a whole lot of things you can assign to u, because there aren’t a
whole lot of things that the 1K uses as multiplicands. Here’s what you get:

u = 0
u = a
u = b
u = [M]

u can be useful. One trick takes advantage of its position as king of precision
precedence. u always gets the 24-bit slot of the multiplier, so in order to reverse the
normal precedence order, you can assign the lower-precedence element to u.

For example, a common scenario involves processing a signal and then scaling it by
a “level” control. After you perform the processing, the signal will typically be sitting
in the accumulator, while the level parameter will be stored in memory somewhere.
But you might not want to simply multiply the accumulator by the memory location,

44 The 1K Target

because memory has the higher precision precedence and your carefully calculated
signal will get chopped down to S3.18. You can use a u assignment to shuffle around
the multiplicands so they get the proper precisions:

; accumulator contains high-precision signal
u = a, a = [level] ; u = signal, a = level
a = a * u ; a = signal.24 * level.18

Similarly, some situations may call for multiplying the accumulator by b, but
giving b the precision advantage. u makes that easy as well:

; b contains high-precision signal
u = b ; u = signal
a = a * u ; a = signal.24 * a.18

Another use for u is efficiently storing an array of S3.18 constants to memory,
perhaps for later use as a lookup table:

u = 0 ; generates: andc 0xfffffff
a = u*a + 1 ; generates: sauc 1 null_output

[mem1] = a, a = u*a + 2 ; generates: sauc 2 mem1
[mem2] = a, a = u*a + 3 ; generates: sauc 3 mem2
[mem3] = a, a = u*a + 4 ; generates: sauc 4 mem3
[mem4] = a ; generates: s1ac 0 mem4

There are some situations in which u can function somewhat as an actual register.
After execution of an assignment that’s prefixed with u = a, u will contain a value
that is no longer available anywhere else—the contents of a before the assignment.
With some clever coding, this can allow you to hang on to a value in the accumulator
throughout a series of arithmetic operations, without using any additional storage:

a = [delta] ; put counter increment in a
u = a, a = [count_up] + a ; increment [count_up], ping delta to u
[count_up] = a, a = u ; store new [count_up], pong delta to a
u = a, a = [count_down] - a ; decrement [count_down], ping delta to u
[count_down] = a, a = u ; store new [count_down], pong delta to a
u = a, a = [count_twice] + 2*a ; increment [count_twice], ping delta to u
[count_twice] = a, a = u ; store new [count_twice], pong delta to a

What can you do with u?

4.4 Indirect Addressing

Sometimes you just don’t know where you’re going until you get there. And some-
times a program won’t know which variable to use until it needs to use it. Indirect

4.4. Indirect Addressing 45

addressing lets you read or write from a memory location whose address is deter-
mined at runtime.

All indirect addresses are indexed through the b register. This might lead you to
guess that the syntax looks something like this:

a = [b] ; WRONG!

But that’s not quite right. To get pedantic, “b”, as we’ve been using it, refers to
“the contents of the b register, interpreted as a S3.24 fixed-point number”. It is
unlikely that this would make a good index; if your indirect address could only vary
over the range −8 to 8, it wouldn’t be especially useful.

Instead, the 1K uses a couple of its integer representations to index the address.
You were already introduced to one of them back on page 34:

a = [Ib] ; loads the value pointed to by Ib

The memory address that the above line refers to is an integer whose least significant
bit is at bit 12 of the 28-bit b register. Everything that was said about the “I”
representation in Section 4.3.1 still applies here. In particular, the I() function is
handy for declaring constants in this representation:

a = I(0x123) ; " Ia = 0x123 " would have also worked
b = a ; move pointer to b register
a = [Ib] ; same as: a = [0x123]
a = b + I(1) ; a = incremented pointer
b = a ; move pointer to b register
a = [Ib] ; same as: a = [0x124]

The second integer representation has so far merely been hinted at, but now it
gets its playing time:

a = [Fb] ; loads the value pointed to by Fb

The effective address above is an integer whose least significant bit is at bit 0 of the
28-bit b register.∗ The example above works just as well if you substitute “F”s for
“I”s:

a = F(0x123) ; " Fa = 0x123 " would have also worked
b = a ; move pointer to b register
a = [Fb] ; same as: a = [0x123]
a = b + F(1) ; a = incremented pointer
b = a ; move pointer to b register
a = [Fb] ; same as: a = [0x124]

∗In case you missed the duality: Fb’s low bit is aligned with the register’s low bit. Ib’s high
bit is aligned with the register’s high bit (if you think of Ib as 16-bit).

46 The 1K Target

If you bought the “millimeters” analogy proposed earlier for I, then you might
like to think of F as “microns”. The same idea, but smaller. Of course, the actual
units for I and F are 2−12 and 2−24 respectively. But as long as you properly use
the I() and F() functions to deal with the integer representations, you usually will
not need to remember this.

Whether you use Ib or Fb, the syntax is the same. The discussion below will use
Ib for the examples, but everything applies equally well to Fb.

Being able to dereference a pointer is nice, but usually you’re more interested in
indexing into an array. You can do this by adding an fixed offset to your index. Or
if you want to think of it the other way around, you’re adding an index to your fixed
address. Whichever makes sense.

a = [buffer] ; load from fixed address
a = [Ib] ; load from pointer
a = [buffer + Ib] ; load by indexing into array

If you like to buffer circularly, you may apply a bitmask to your index. The index
will be ANDed with the mask before being added to the fixed offset.

a = [buffer + (Ib & 0x1f)] ; index is now modulo-32

The tricky part here is that the & operator has lower precedence than the + operator,
so you need the parentheses to keep things straight. If you forget the parentheses
(and you probably will), bkasm may gently remind you.

Indirect addressing isn’t just for loading, of course—you may store indirectly as
well. The syntax is exactly the same, except backwards:

[Ib] = a ; store to pointer
[buffer + Ib] = a ; store into array
[buffer + (Ib & 0x1f)] = a ; store into circular buffer

Only “sample memory”, from addresses 0 to 0x3ff, may be indirectly addressed.
Thus, all indirect addressing is inherently modulo-1024. If you try to point past
0x3ff, you’ll wrap around.

Sometimes when people use Ib for indexing, it bothers them that there’s twelve
bits “underneath” the integer which are just going to waste. One way to put these
bits to work is to use them for interpolating between values in the array. This
might make sense if, for instance, you had a buffer of audio samples and wanted to
connect the dots to approximate a continuous signal. In the example below, ptr can
be interpreted as either an array index in I format which happens to have fractional
bits, or a S3.24 number where 0.25 covers 1024 buffer samples. The important thing
is that ptr has significant bits below I(1).

4.5. Conditionals 47

; simple interpolation between two points in a buffer
a = [ptr] ; a = pointer in I format
a &= I(1) - F(1) ; isolate fractional bits
a *= 1/I(1) ; scale up to S3.24 format (requires bigmult macro)
[interp] = a ; store interpolation fraction

b = [ptr] ; b = pointer in I format
a = [buf + Ib] ; a = lower buffer data
[lower] = a ; store lower data
a = [buf + 1 + Ib] ; a = higher buffer data
a -= [lower] ; a = difference between higher and lower data
b = [lower] ; b = lower buffer data
a = a * [interp] + b ; a = lower + fraction*(higher - lower)

4.5 Conditionals

When you are processing a high-fidelity audio signal, it’s great to have 24 bits past
the decimal point to capture the subtleties. But sometimes you don’t want all of
these shades of grey; you want to ask the 1K a question and have it respond with
“yes” or “no”. That’s what conditionals are all about.

4.5.1 1K-style Conditionals

At the machine instruction level, conditionals are evaluated with the 1K’s c in-
struction. This instruction sets the accumulator to a particular value if a particular
condition is true, or sets a to zero if not. For example,

c Z 3.75

will test if the accumulator is Zero. If it is, it is set to 3.75; if not, it is set to zero.
There are sixteen different conditions that 1K knows about:

c T 3.75 ; always true (effectively: a = 3.75)

c Z 3.75 ; true if a == 0
c !Z 3.75 ; true if a != 0
c N 3.75 ; true if a < 0
c N+Z 3.75 ; true if a <= 0
c !N 3.75 ; true if a >= 0
c !N!Z 3.75 ; true if a > 0

c !V 3.75 ; true if no overflow
c !VN 3.75 ; true if no overflow and a < 0

48 The 1K Target

c !V(N+Z) 3.75 ; true if no overflow and a <= 0
c !V!N 3.75 ; true if no overflow and a >= 0
c !V!N!Z 3.75 ; true if no overflow and a > 0

c V 3.75 ; true if overflow
c VN 3.75 ; true if overflow and a < 0
c V!N 3.75 ; true if overflow and a >= 0
c VZ 3.75 ; true if overflow and a == 0 (!)

You typically won’t need to learn these condition codes, however, since bkasm

provides a friendlier and more familiar syntax for specifying conditionals.

4.5.2 C-style Conditionals

The following line means the same to bkasm as it does to a C compiler:

a = (a < 0)

It tests whether the a register is negative. If it is, a is set to one; otherwise, it is set
to zero. bkasm lets you compare a to zero in every way imaginable:∗

a = (a == 0)
a = (a != 0)
a = (a < 0)
a = (a <= 0)
a = (a >= 0)
a = (a > 0)

The following line also means the same to bkasm as it does to a C compiler,
although it’s possibly more common an idiom in BASIC than in C:

a = 3.75 * (a < 0)

If a is negative, a is set to 3.75; otherwise, it is set to zero. Any conditional phrase
may be multiplied by a constant.

That’s about all that the 1K can do in a single instruction. But if you are willing
to spend an extra instruction, bkasm will let you compare just about anything with
anything else:

∗As you might guess from standard operator precedence, the parentheses are not strictly neces-
sary. But just because bkasm can read these statements without parentheses doesn’t mean that you
can. While we’re at it, don’t try merging the comparison operators with the assignment operator.
“a = a < 0” is a valid statement, but “a <= 0”, of course, means something else entirely. And
don’t even think of writing “a = (a == 0)” as “a === 0”.

4.5. Conditionals 49

a = (a != b)
a = (a > 3*[monkey])
a = (b == [lemur]/2)
a = ([orangutan] <= 3.75)

Well, not exactly anything. The 1K must have an instruction that can subtract
the two terms in the comparison, although bkasm is smart enough to try doing the
comparison backwards if forwards doesn’t work. Of course, you may multiply these
conditions by constants as well:

a = 7 * ([gorilla] == 1/2)

Compound Conditions

The following line (you guessed it) means the same to bkasm as it does to a C
compiler:

a = (a > 2) && (b < 4)

If both clauses of the condition are true, a is set to one; otherwise, it is set to zero.
You can make your conditions as complicated as you like:

a = (((a > 2) && (b < 4)) || ([monkey] < 3.75) || \
(b == [lemur]/2)) && ([gorilla] == 1/2)

But there’s a catch. Since the accumulator is used for evaluating these conditions,
the original value of the a register is clobbered as soon as you get past the first
comparison. The syntax makes it tempting to write statements such as:

a = (a < -2) || (a > 2) ; WRONG!

But there’s no way to evaluate such a thing without using another register. Thus,
you are only allowed to refer to the a register in the very first clause. Anywhere
after that, bkasm will complain.

The syntax is even more general than this. The following line will make C pro-
grammers’ eyes glaze over, although Perl coders will have no problem with it:

a = 3.75 * ([gibbon] > 0.7) || 4.75 * ([ape] > 0.8)

In C, you would write this as:

50 The 1K Target

if (gibbon > 0.7) { a = 3.75; }
else if (ape > 0.8) { a = 4.75; }
else { a = 0; }

That’s because C’s logical operators only know how to return zero or one. Perl’s
logical operators, which inspired this particular bit of syntax, return the result of
the last expression they evaluate. The OR operator doesn’t bother evaluating its
right side if its left side is already true, so a chain of ORed expressions effectively
returns the first one to come up non-zero. With bkasm, this can be very useful for
mapping conditions to numbers:

a = 1 * ([monkey] > 0) || \
2 * ([lemur] > 0) || \
3 * ([gorilla] > 0) || \
4 * ([gibbon] > 0) || \
5 * ([ape] > 0)

Multiplication distributes, as it probably should, but it looks pretty weird in
doing so. The following two lines are equivalent:

a = 1.5 * (2 * (a > 0) || 3 * (b > 0))
a = 3 * (a > 0) || 4.5 * (b > 0)

Overflow

The S3.24 format can only represent numbers in the range −8 ≤ x < 8. If the result
of an arithmetic instruction tries to escape from this box, it gets squashed against
the floor or the ceiling, and ends up as −8 or 8 − F (1) respectively. But the 1K
doesn’t leave you in the dark about this; the squashing sets the processor’s overflow
flag, which may be examined on the subsequent instruction.

You tell bkasm to check for overflow by comparing to ±8. Essentially, your
conditional verifies that a result is in the proper range:

a = [rain] + SPAIN ; arithmetic instruction
a = (a < -8) || (a >= 8) ; a = 1 if overflow occurred

a = [main] + PLAIN ; arithmetic instruction
a = (a >= -8) && (a < 8) ; a = 1 if overflow did not occur

If you are a notational purist, this syntax may horrify you, since it involves testing for
something that cannot possibly be true. But that’s really just a matter of perception.
One way to think about it is, in the inequalities above, a represents the result of the

4.5. Conditionals 51

previous arithmetic operation before saturation. You pretend that clipping doesn’t
actually take place until after the comparison. This sort of makes sense, if you let
it.

You may also check specific ranges between zero and the boundaries, or verify the
direction of your overflow. Here are the overflow-related conditions that you get:

a = (a >= -8) && (a < 8) ; true if no overflow

a = (a >= -8) && (a < 0) ; true if no overflow and a < 0
a = (a >= -8) && (a <= 0) ; true if no overflow and a <= 0
a = (a >= 0) && (a < 8) ; true if no overflow and a >= 0
a = (a > 0) && (a < 8) ; true if no overflow and a > 0

a = (a < -8) || (a >= 8) ; true if either overflow
a = (a < -8) ; true if negative overflow
a = (a >= 8) ; true if positive overflow

The last two are the ones you are most likely to use, and they also happen to be
simple one-clausers:

a = [ptr] + I(1) ; test whether we can increment the pointer
a = (a >= 8) ; would it overflow?
[reached_end_of_buffer] = a ; if so, make a note of that

Unfortunately, there is no inverse for those two; you cannot ask if a result “did not
positively overflow”. In practice, you rarely need to actually know this, because
a simple “did not overflow” will suffice. However, in these situations, it can be
convenient to simply be able to write (a < 8) instead of cluttering up your con-
ditional with a full “did not overflow” test. The --allow-one-sided-overflow

option allows you to do this:

.option allow-one-sided-overflow
a = [ptr] + I(1) ; test whether we can increment the pointer
a = (a < 8) ; is it still in valid range?
[not_at_end_of_buffer] = a ; if so, make a note of that

This is merely a syntactic shortcut for when you’re only expecting overflow from a
particular direction. It really is a full (a >= 8) && (a < 8) in disguise.∗

∗Conditional branches, on the other hand, can actually handle a genuine (a < 8). See Sec-
tion 4.6.

52 The 1K Target

Efficiency

When it comes to implementing compound conditions, there are various tricks that
can save an instruction or two in special cases. bkasm does not (currently) know any
of these—it treats every compound condition as a general case and doesn’t try to
optimize. Thus, if you try to optimize, you can often come up with a clever solution
that beats bkasm’s.

For example, consider a positive-going zero-crossing detector, such as you might
use in a simple frequency-detection algorithm. The most natural way to write this
is:

a = ([previous_sample] < 0) && ([this_sample] >= 0)

bkasm’s implementation takes five instructions:

cm 1 previous_sample
c N 1
skip Z 2
cm 1 this_sample
c !N 1

But a more efficient solution can be found by rearranging things and letting the
multiplier come out and play:

a = ([this_sample] >= 0)
a = (a*[previous_sample] < 0)

This only takes four instructions:

cm 1 this_sample
c !N 1
amc 0 previous_sample
c N 1

But is that one instruction really worth the time it took to design the clever
solution, or the time it will take to reevaluate and redesign it when it needs to change
later on? If you individually optimize your compound conditions, you might write
faster code, but you’ll never write code faster. Letting bkasm handle your compound
conditions results in code that is easy to write, easy to read, and guaranteed to be
correct. Especially during the initial stages of implementation, these properties are
often more valuable than squeezing out an extra instruction or two. You can always
go back and optimize when you hit an code size crunch.

4.6. Flow Control 53

4.6 Flow Control

In order for a computational system to be Turing complete, it must offer some means
of executing code conditionally. Although the 1K clearly makes no claims to being
complete in any sense, it does in fact provide a conditional branch operation.

This doesn’t mean that you get loops or subroutines, though. The 1K’s program
counter moves forward inexorably. You can branch to the future, but you can’t
come back.

4.6.1 1K-style Flow Control

At the machine instruction level, branches are implemented with the skip instruc-
tion. This allows you to conditionally skip over a sequence of instructions that you
don’t want executed. The skipping is done in space, not time; the 1K always spends
one clock cycle on each of its 1024 instructions, whether the instruction is skipped
or not.

The skip instruction takes two operands. The first is the condition, and it uses
exactly the same condition codes that you saw on page 47. The second operand
indicates where to skip to.

skip !N!Z 2 ; skip two instructions if (a > 0)

The first operand may be omitted for an unconditional branch:

skip 2 ; skip two instructions, no matter what

For backwards compatibility, the second operand of the skip instruction can
actually mean two different things. If the operand is a simple number, as above,
then it represents how many subsequent instructions should be skipped. skip 0

is effectively a “no-op” and simply continues on to the next instruction; you start
counting from there.

If the second operand is not a simple number, then it is interpreted as the address
in instruction memory to skip to. This is normally a label, although it could be any
symbol or expression that resolves to a valid address. Section 5.6 is all about labels.

skip !Z wall ; if a is non-zero, skip to ---
cm 1 humpty ; |
s1ac 0 dumpty ; |

wall: ; here <-----------------------

54 The 1K Target

Except in extraordinary circumstances, you should always skip to labels. Skipping
to an expression or over a literal number of instructions implies that you know
exactly how many instructions bkasm is going to generate in a given location, and
due to piggybacking and load propagation, that’s a prediction you’re better off not
making. More importantly, bkasm likes to know where all of the branch targets are
so it can avoid piggybacking or optimizing across them. If you provide a literal
skip count, bkasm can’t know exactly which statement you’re skipping to, so it may
generate incorrect code. Unless you are writing entirely in machine instructions,
always skip to labels.

As with conditionals, bkasm provides a friendlier syntax than the raw machine
instruction, so you’re probably better off without skip in any case.

4.6.2 Asm-style Flow Control

If you come from an assembly language background, you may be most comfortable
with bkasm’s assembly-style branching statements. These are similar to instructions
offered by traditional microprocessors.

jmp label ; "jump". Same as: skip T label
bra label ; "branch always". Same as: skip T label
goto label ; "go to". Same as: skip T label
beq label ; "branch if equal to zero". Same as: skip Z label
bne label ; "branch if not equal to zero". Same as: skip !Z label
bpl label ; "branch if plus". Same as: skip !N label
bmi label ; "branch if minus". Same as: skip N label
blt label ; "branch if less than". Same as: skip N label
ble label ; "branch if less than or equal". Same as: skip N+Z label
bge label ; "branch if greater than or equal". Same as: skip !N label
bgt label ; "branch if greater than". Same as: skip !N!Z label
bvc label ; "branch if overflow clear". Same as: skip !V label
bvs label ; "branch if overflow set". Same as: skip V label

The ones that imply comparison can be used after a subtraction like so:

a = b - [acon]
blt sandwich ; branch to "sandwich" if (b < [acon])

4.6.3 C-style Flow Control

The preferred syntax for flow control follows that used by many popular high-level
languages, such as C, Perl, BASIC, shell, and English. It’s simply the familiar
if-then-else construct. There are actually two variations on this syntax, one for

4.6. Flow Control 55

those who like labels and one that is label-free and more “structured”. If you are
inclined toward traditional assembly coding, then you’ll probably feel more com-
fortable sticking with labels. But labels are considered somewhat passé in modern
high-level programming, so if you come from that background, structured flow con-
trol is for you. Use whichever suits your style, or mix and match to taste.

If labels are your thing, this is how you get around:

if (a != 0) wall ; if a is non-zero, skip to ---
a = [humpty] ; |
[dumpty] = a ; |

wall: ; here <-----------------------

Following the if keyword is an algebraic condition in parentheses, followed by a
label to branch to if the condition is true. It’s very similar to C, if you pretend
there’s a goto between the condition and the label.

If you prefer the more structured approach, then follow your condition with an
opening curly brace instead of a label:

if (a == 0) { ; if a is non-zero, skip to ---
a = [humpty] ; |
[dumpty] = a ; |

} ; here <-----------------------

The section of code between the opening and closing braces above is called a block.
Blocks have a number of wonderful uses, such as defining the scope for local vari-
ables, symbols, and options (see Section 5.8), but here, they are being used to delimit
conditionally-executable sequences of statements. Assembly is not a freeform lan-
guage, so brace placement is less flexible than in C. The opening brace must be on
the same line as the if keyword, and the closing brace must be near the start of a
line. (The closing brace may be placed after labels, but not after statements.)

You get else as well. Like Perl, bkasm spells “else if” as elsif, and the syntax
is the same as for the initial if:

if (a < 0) {
a = [kumquat]

}
elsif (a > 0) {
a = [lytchee]

}
else {
a = [kiwi]

}

56 The 1K Target

You may place the keywords on the same line as the closing braces, if that’s more
your style:

if (a < 0) {
a = [kumquat]

} elsif (a > 0) {
a = [lytchee]

} else {
a = [kiwi]

}

The labeled syntax works with elsif as well. You can even combine the two
syntax variations within a single structure, if you come up with a good reason for
doing so:

if (a < 0) {
a = [kumquat]

}
elsif (a > 0) getLytcheeFromChina
else {
a = [kiwi]

}

You may nest blocks as deeply as you like. If you do, of course, be sure to use
the proper indentation so you don’t get lost:

if (a < 0) {
a = [kumquat]
if (a == 0) {
a = [rhubarb]

}
else {
a = [date]

}
}

The conditions of your if and elsif statements may be any of the comparisons
to zero on page 48 or overflow conditions on page 51:

if (a >= 8) { ; positive overflow
a = [mango]

}
elsif (a < -8) { ; negative overflow
a = [pomegranate]

}
elsif (a >= -8 && a < 0) { ; negative, but no overflow
a = [papaya]

}

4.6. Flow Control 57

Frankly, however, comparing to zero and testing for overflow are boring. But
that’s all that the 1K can do without clobbering the accumulator. And unlike
conditional evaluation in the previous section, an if statement certainly does not
look like an assignment to anything, and it would be unusual and unexpected if it
went around messing with your registers. So, bkasm doesn’t let it.

Destructive Conditions

Unless you want it to, of course. If you think you can deal with ifs that modify the
a register, then the --allow-destructive-if option is your ticket to conditionals
that are limited only by your imagination.∗

They’re also limited by the restrictions in the previous section, although there is a
bit more leniency. A clause in a compound condition still can’t refer to the a register
after it has been clobbered by a previous clause, but unlike before, comparing to
zero or testing for overflow doesn’t actually clobber anything. So bkasm will actually
let you refer to the accumulator multiple times, as long as you put the “free” ones
first:

.option allow-destructive-if
if ((a < 0 || a >= 8) && (a != [guava]) && (b != [persimmon])) {
a = [gooseberry]

}

In the example above, the accumulator is not actually clobbered until the (a != [guava])

clause.

Destructive ifs are highly recommended. Evaluating complex conditions and
maintaining structured flow control are two of the most notoriously difficult tasks
that assembly programmers have to deal with, which is why bkasm lets you step
things up a level and handle them almost as if you were using C. But be careful!
You should never use the value of the accumulator immediately after a destructive
if. The familiarity of the syntax makes this sort of mistake all too easy:

a = [fig]
if (b == [apple]) {
a = a + NEWTON ; WRONG! a is not what it appears to be!

}

Even if you think you know what the conditional is going to leave in the accumulator,
you still should not rely on it, because bkasm might decide to evaluate a comparison

∗As with all options that affect the semantics of the language, you’re better off specifying this as
a .option in your source file rather than on the command line. That way, future borrowers of your
code won’t need to know some specific command line incantation in order to make it assemble.

58 The 1K Target

backwards. If you want to use the value of the accumulator after a comparison, you
are much better off writing out the subtraction explicitly and following it with a
non-destructive condition. This is both more reliable and more readable:

a = [currant] - MAX_AMPERAGE
if (a > 0) { ; effectively, test if [currant] > MAX_AMPERAGE
[currant_overflow] = a ; but be able to use the difference here
goto tripCitrisBreaker

}

Another pitfall to watch out for is using a clobbered accumulator in an elsif condi-
tion. This is especially insidious because the if and elsif can be textually spaced
far apart, which makes it easy to overlook their connection:

a = [berry]
if (a == STRAWBERRY) {
...

}
elsif (a == RASPBERRY) { ; WRONG! a is not what it appears to be!
...

}

bkasm is (currently) not smart enough to catch this mistake, so hopefully you’ll be
smart enough not to make it.

Break

bkasm offers one more flow control mechanism, for when you’ve started out struc-
tured but need to bend the rules. break is similar to its namesake in C, although it
is more closely related to the last statement in Perl.

bkasm lets you use break either as a symbol or a keyword. As a symbol, it refers
to the end of the innermost enclosing block. This is especially useful as the label
after an if, where it sort of looks like a statement:

if (a == 0) {
a = [nuts] + WALNUT + CHESTNUT + HAZELNUT
[nuts] = a
if ([fruit] == 0) break ; if [fruit] == 0, skips to ---
a = [nuts] + COCONUT ; |
[nuts] = a ; |

} ; here <-----------------------

The broken block does not necessarily have to be part of an if statement. It’s
perfectly acceptable to lay down a bare block for the express purpose of breaking
out of it:

4.6. Flow Control 59

{ ; start a bare block
a = [nuts] + WALNUT + CHESTNUT + HAZELNUT
[nuts] = a
if ([fruit] == 0) break ; if [fruit] == 0, skips to ---
a = [nuts] + COCONUT ; |
[nuts] = a ; |

} ; here <-----------------------

This is a convenient way to jump around without having to resort to labels. It also
tends to be more readable as long as you pay attention to indentation, and it’s easy
to copy and paste without worrying about the uniqueness or locality of your labels.

When you write break by itself, as a statement, bkasm pretends that you said
skip break, which has the effect of jumping you out of the innermost enclosing
block. This can be used in conjunction with labels to emulate a switch-like construct:

{
summer: a = APRICOT + PEACH + MELON, break
autumn: a = GRAPE + KIWI + FIG, break
winter: a = APPLE + PEAR, break
spring: a = LOQUAT
}

The above example assumes that other parts of the code jump to the seasonal labels.
The break statement allows you to exit the block without having to explicitly label
the end.

As described in Section 5.6, bkasm offers some fairly sophisticated labeling fea-
tures. And if you come from a “braces and blocks” background, you might never use
them at all. if, elsif, and break can get you almost everywhere you need to go,
and you can probably get by without ever laying down a single label. On the other
hand, if you prefer jumping to labels, there’s no need to use blocks for anything. Go
with whichever style you’re most comfortable with.

5
The Assembler

bkasm is a retargetable assembler. This means that bkasm would be happy to as-
semble code for any processor that you care to describe to it. All processor-specific
functionality is boxed up into a self-contained module which bkasm loads in when
it sees the -T command line switch (or when it doesn’t). This module is called a
target module, or more informally, a target.

This basically means that the previous chapter was one big lie. Almost nothing
in the last chapter involved bkasm proper; instead, you were reading about how to
write for the 1k target. Without this target module, bkasm wouldn’t know what a
meant, let alone how to assign to it.

The target may be the brains of the assembler, but bkasm provides some hefty
brawn to back it up. The target relies on bkasm to deal with expressions, symbols,
and labels, as well as memory allocation for data. The target doesn’t even know
about conditional and iterative assembly or macros; these all happen behind the
target’s back. This chapter will cover all of these target-independent amenities, and
much more.

Learn your target, but learn your assembler as well! bkasm provides quite a few
features to make the code-writing process quicker, cleaner, and more enjoyable, but
you have to ask for them.

61

62 The Assembler

5.1 Basics

Comments

Despite the algebraic syntax of the 1k target, bkasm thinks of itself as an assembler,
and therefore recognizes the traditional assembler comment character—the semi-
colon. bkasm ignores everything from a semi-colon to the end of the line.∗

; bkasm will never see this. Hey, bkasm! You suck!

There are no multi-line comments, as such, although an .if 0 / .endif pair will
usually work in a pinch. However, a line of semi-colons down the left column of the
file has a certain visual distinction that makes it clear that you’re reading something
that’s not intended to run. If your text editor cannot comment and uncomment
regions automatically, you need a better text editor.

Directives

Much of what you write is intended to represent executable code, and these state-
ments get passed on the target. But sometimes you want to talk to bkasm directly,
and you do this through assembler directives.

When it comes to directive syntax, bkasm is a bit more schizophrenic than it is
with comments. For various compatibility and convenience reasons, bkasm recog-
nizes two different directive styles. Traditionally, assembly directives begin with a
dot:

.eat OATS ; assembly code

The C preprocessor, however, looks for directives that begin with a pound sign:

#eat OATS /* C code */

Some traditional assembly directives take a subject before the directive itself:

MARES .eat OATS ; assembly code

whereas directives in C must be at the start of the line, so the subject and object
both follow the directive:

∗Usually. The exceptions are within .perl and .perlmacro blocks, which follow Perl’s rules.
See Section 5.14.

5.1. Basics 63

#eat MARES OATS /* C code */

Any of bkasm’s directives can be written in either style, and then some. bkasm

never cares about leading whitespace on a line, so you may indent your directives
however you like. With assembly-style directives, you can put the first argument
either before or after the directive. These lines all mean the same thing:

#eat MARES OATES ; c-style
#eat MARES OATES ; c-style, indented

MARES .eat OATS ; asm-style, subject first
.eat MARES OATS ; asm-style, directive first

Assembly-style directives are recommended, since bkasm is, after all, an assembler,
and writing your directives as subject, verb, object when the directive is a verb is
recommended as well, since that’s how we structure sentences in English. But if
your fingers naturally reach for the pound sign when you think about directives,
that’s okay with bkasm.

One syntactic construct supported by many assemblers that is not okay with
bkasm is the pseudo-op, which is a directive that looks like an assembly instruction:

SYMBOL set VALUE ; WRONG in bkasm!
DATA ds 1 ; WRONG in bkasm!

bkasm requires all directives to be marked with a dot or a pound sign.∗ Enforcing
separate namespaces for directives and instructions is essential for forward compat-
ibility, especially with a retargetable assembler, and it also allows you to visually
distinguish the code from the metadata. A directive will never generate executable
code—it can only indicate what you’d like done with the code you do write. It’s
good to keep the concepts distinct.

bkasm provides a lot of interesting directives, most of which will be described
throughout this chapter. You may also use Appendix C as a quick reference. Targets
are allowed to define additional directives as well. The 1k target doesn’t define
anything worth mentioning, but the linker knows about plenty of extra directives,
and they will be covered in Chapter 6.

5.1.1 The .option Directive

Directive: .option NAME=VALUE

∗For compatibility with 1kasm, there actually are a few directives which can go dotless. But
don’t do that.

64 The Assembler

The .option directive is one of the most important ones, which is why it was
briefly introduced back on page 19. This directive lets you set named parameters
that influence bkasm’s behavior. If you do not provide a value, the parameter is
implicitly set to 1, which enables the more Boolean-oriented options. Setting an
option to 0 will typically disable it.

.option fix-all-bugs ; same as: .option fix-all-bugs=1

.option bug-fixing-algorithm=achieve-sentience

.option taunt-user-when-bug-found=0 ; disable option

Specifying an option in the source is, in most respects, similar to specifying it on
the command line:

% bkasm --fix-all-bugs myfile.asm

The main difference is that options given on the command line are active throughout
all source files, whereas an .option directive is forgotten about when its file ends.
This prevents one file’s personal configuration from leaking over into another file
that was expecting a default setup.

If you actually want a particular file’s options to be remembered across all source
files, you can use the strange but occasionally handy --remember-options option.
When given on the command line, no options are ever forgotten—each source file
inherits the options set by all previous source files.

% bkasm --remember-options onefish.asm twofish.asm redfish.asm

In the above example, any options set in onefish.asm would stay in effect all the
way past redfish.asm and even into the linker script,∗ unless changed somewhere
along the way.

When this option is given not on the command line, but as an .option directive,
all other .option directives in the file will be remembered except for the .option

remember-options option itself. This prevents subsequent source files from inad-
vertently making their own options memorable.

;;; onefish.asm:
.option fix-all-bugs
.option remember-options

% bkasm onefish.asm twofish.asm redfish.asm

In the above example, --fix-all-bugs would be in effect through all source files,
but any options set by twofish.asm would be forgotten as soon as twofish.asm

ended.
∗Presumably named bluefish.ld.

5.1. Basics 65

5.1.2 The .include Directive

Directive: .include FILENAME

The .include directive tells bkasm to put the current source file on the back
burner and start assembling another file in its place. The effect is almost as if the
contents of the included file had been grafted into the main source at the point of
the directive. The primary functional difference is that individual files must tidy
up their control directives (Sections 5.9 and 5.10); the included file can’t open an
.if that is answered by an .endif in the main file, or vice versa. Such a situation
usually indicates a mistake, so bkasm catches it.

If you specify an unqualified filename, bare or within quotes, bkasm will look for
it in the “current directory”, wherever that is. It typically is the same place that
the assembly file itself is located.

.include my_favorite_definitions.inc

.include "my_favorite_definitions.inc"

If the filename is given in pointy brackets, bkasm will expend a little more effort in
trying to find it. If it’s not in the current directory, bkasm will look through each
directory in the include path. Directories are added to the include path through
the --include-path=DIRECTORY list option or the -I command line switch (see
page 20). bkasm tries these directories in reverse order, so more recently added
directories get priority.

.option include-path=/usr/include/

.option include-path=/usr/local/include ; trailing slash doesn’t matter

.include <my_favorite_definitions.inc>
; looks for: ./my_favorite_definitions.inc
; then: /usr/local/include/my_favorite_definitions.inc
; then: /usr/include/my_favorite_definitions.inc

By default, included files show up in your listing file. However, you typically
use includes just for symbol and macro definitions, and you may not want these
cluttering up your listing. Setting --list-included-files=0 will clean up this
situation. More information about listing files and related options can be found in
Chapter 7.

In higher-level languages, it is somewhat of an unwritten law∗ that an include
file should never contain bare executable code, variable or table declarations, or
anything else that takes up space in an object file. Except in unusual situations,
every source file in a project should be able to include every include file without

∗Well, unwritten except for here. And in dozens of books on good programming practice.

66 The Assembler

any ill effects. Historically, assembly-level projects have sometimes needed to bend
this rule as a way around a toolset’s poor (or non) support for linking and macros.∗

bkasm can link and macro with the best of them, so it’s probably a good idea to
reserve include files for definitions, and keep the instantiations in the main source.

5.1.3 The .error and .warn Directives

Directive: .error MESSAGE

The .error directive generates an error that looks and behaves a lot like one of
bkasm’s internal errors. You would typically use it in a macro to indicate that a
parameter of some sort is incorrect, although it can also be used for basic sanity-
checking:

BUFFER_LENGTH .equ someComplicatedFormula()
.if BUFFER_LENGTH > MAX_LENGTH

.error Buffer is too big!
.endif

Directive: .warn MESSAGE

The .warn directive generates a warning that looks and behaves a lot like one of
bkasm’s internal warnings. This also is useful for general debugging, sanity-checking,
and catching inefficiencies:

DELTA_DENTAL .equ someComplicatedFormula()
a = [dental] + DELTA_DENTAL ; increment [dental] by a delta value
[dental] = a ; and store it back
.if DELTA_DENTAL == 0 ; warn if those were wasted instructions

.warn This code has no effect.
.endif

5.2 Expressions

When you take numbers, symbols, operators, and functions, and mix them all to-
gether, you get an expression. Expressions are used throughout bkasm. The right
side of a 1k assignment statement is an expression, as are the two operands follow-
ing a 1k machine instruction. Many of the directives that you will learn about in
this chapter will expect expressions as arguments. Most expressions are expected to
(eventually) resolve to a simple number, although some expressions, like 1k assign-
ments, merely need to resolve to a form.

∗Especially in the embedded systems field, where the only tools available for many specialized
processors are abominable vendor-supplied assemblers written by hardware engineers.

5.2. Expressions 67

5.2.1 Operators and Functions

bkasm uses Perl to evaluate all expressions, which means that you have unfettered
access to all of the operators and functions that you know and love from Perl. If
you are unfamiliar with Perl, then you can simply stick with the operators that you
know and tolerate from C. Here are some of the more relevant of these operators,
ordered by precedence:

** ^ Exponentiation
! Logical NOT
* / % Multiplication, division, and remainder
+ - Addition and subtraction
< > <= >= Inequality tests
== != Equality tests
& Bitwise AND
| Bitwise OR
&& Logical AND
|| Logical OR

The precedences and associativities are the same as in C. As expected, you may
use parentheses to subvert the default precedence levels:

a = 2 * 3 + 4 ; same as: a = 6 + 4
a = 2 *(3 + 4) ; same as: a = 2 * 7

bkasm also defines an expansive set of trig and other math functions. You can
find these listed in Appendix E, and you’ll probably recognize most of them from
Matlab’s elfun package, if that’s where your background lies.∗ In general, they
are spelled just like you’d expect, and there are synonyms for those cases in which
you’re not sure what to expect:

a = sin(pi/4) ; same as: a = 1/sqrt(2)
a = cot(pi/4) ; same as: a = 1
a = cotan(pi/4) ; synonymous with previous line

Because all expressions are evaluated as Perl code, you have unrestricted access
to Perl’s entire vocabulary. Anything that Perl can do, an expression can do, even
if you might not want it to. For example:

oopsies .equ 3 + unlink <*> ; DON’T TRY THIS AT HOME

∗If your background lies with Perl, you’ll recognize most of them from the standard
Math::Complex module.

68 The Assembler

The preceding line will set the oopsies symbol to three plus the number of files that
used to be in your directory before bkasm went and deleted all of them. Although it
makes for great April Fool’s pranks, this sort of thing is not exactly encouraged. If
you want to invoke a Perl function for its side effects rather than its return value, you
should probably use one of the directives in Section 5.14, such as .eval or .perl.

5.2.2 Complex Math

All of the mathematical operators and functions work with double-precision floating
point numbers, which is mentioned only because most assemblers only evaluate
integer expressions.∗ Perhaps more surprisingly, all math operators and functions are
fully capable of accepting and returning complex numbers. sqrt(-7) and acos(2)

are not errors—they return a perfectly usable, if not quite real, result.

a = Re(acos(2)) ; same as: a = 0
a = Im(acos(2)) ; same as: a = log(2 + sqrt(3))

If you want to start off with a complex number, you can use either of the synonymous
i or j symbols:

a = i * i ; same as: a = -1
a = e^(pi * j) ; same as: a = -1

The general rule is that an expression is allowed to bounce around the complex plane
as much as it likes during evaluation, but it ought to resolve to a real number by
the time it is used as a constant in a machine instruction.† If bkasm is expecting a
real number and finds something that isn’t real enough, it will issue a warning and
use the real part.‡

This may all sound like overkill. It’s not. You can’t open any textbook on digital
signal processing without encountering a pageful of j s (or i s, depending on the
persuasions of the authors). At some point long ago, a mathematician noticed that
the cyclicity of exponentiated imaginary numbers could be used to represent periodic
signals, and once that model caught on, there was no turning back. Within the
modern framework, the design of any significant signal processing system involves
complex manipulation.

∗Most assemblers can’t take a hyperbolic arc cosecant, either.
†At least until Alesis invents the (1+i)K DSP.
‡This questionable behavior is borrowed from Matlab. Questionable because in Matlab, taking

the modulus would typically make a lot more sense than the real part. But bkasm tries to follow
precedents whenever possible (except when it doesn’t).

5.3. Symbols 69

The implementation of such a system, on the other hand, can often be completely
real, which leads to the prevalent DSP programming paradigm of designing a system
in Matlab, getting back a list of coefficients, and then plugging them into a template
of real-valued fixed-point DSP code. This is awkward. It requires writing code in
two languages and running back and forth between two applications. It is easy
to lose track of which version of Matlab code corresponds to which DSP iteration.
Frequently, the Matlab script gets lost when its job is done, leaving future borrowers
and maintainers of the DSP code with an opaque and untweakable list of coefficients.

The purpose of bkasm’s mathematical sophistication is not to show off Perl’s
seamless support for complex numbers,∗ but to tear down the artificial barrier be-
tween design and implementation languages, and give you the power to design a
DSP system entirely within the assembler. If the Matlab detour can be reduced
or eliminated, then not only will design code never get separated from implementa-
tion code, but iterations of the tweak-compile-test cycle can be made overwhelmingly
faster. Instead of opening a Matlab script, changing a parameter, running the script,
copying a coefficient table, pasting it into a DSP file, and assembling it, you simply
change the parameter in the assembly file, reassemble, and you’re good to go. When
taken to its logical conclusion and combined with some of bkasm’s other features,
this concept can completely change the playing field. Programming and experimen-
tation can be a much different experience if you happen to have, at your fingertips,
a library of generalized, parameterizable macros capable of transparently turning
out ready-to-run DSP code for any occasion. bkasm makes it possible, and you’ll
see some examples in later chapters.

5.3 Symbols

Symbols have no direct analog among the lower-level high-level languages such as
C, which is unfortunate because they are extremely handy. In C, their ecological
niche tends to be filled (poorly) by constant preprocessor macros, but because these
macros are blind text substitutions and they are not syntax-checked at definition
time, they represent a notorious source of programming errors. Symbols are a much
cleaner approach to named constants and compile-time variables, and it is strange
that they have historically remained the domain of assembly languages.

5.3.1 The .equ, .set, and .unequ Directives

Directive: SYMBOL .equ EXPRESSION

∗Well. . . maybe a little.

70 The Assembler

The .equ directive is the typical way to create a symbol:

ANSWER .equ 42

After the above statement, you may use the word ANSWER to represent the number
42 in any expression:

a = sqrt(ANSWER) ; same as: a = sqrt(42)

This is not mere text substitution, however. The expression is evaluated when the
symbol is defined, and ANSWER represents the number 42, not the string "42". This
is much different than a C-style macro:

ANSWER_SYMBOL .equ 6*9 ; define a symbol
a = 1 / ANSWER_SYMBOL ; same as: a = 1 / (6*9)

#define ANSWER_MACRO 6*9 ; define a macro
a = 1 / ANSWER_MACRO ; same as: a = (1/6) * 9

SINGULARITY_SYMBOL .equ 1/0 ; error at definition time
#define SINGULARITY_MACRO 1/0 ; no error until used, maybe not even then

Directive: SYMBOL .set EXPRESSION

The .set directive behaves almost identically to .equ. The only difference is that
.equ will complain if you try to define a symbol that already exists, whereas .set

will simply go ahead and redefine it. This makes .equ appropriate for constants,
and .set handy for assembler variables:

INT_TO_FIXED .equ 1/I(1) ; define INT_TO_FIXED = 2^12

multiplier .set INT_TO_FIXED
.while multiplier < -8 || multiplier >= 8
a *= -8
multiplier .set multiplier/(-8)

.endloop
a *= multiplier

Directive: SYMBOL .unequ

The .unequ directive makes bkasm forget about a symbol. If the symbol had been
used previously in an expression, that expression is not affected, but subsequent
expressions will not be able to use the symbol. The symbol may be brought back
to life with either .equ or .set. It is not an error to .unequ a symbol that doesn’t
actually exist yet.

5.3. Symbols 71

GOLD .equ (1 + sqrt(5))/2
a = GOLD ; same as: a = (1 + sqrt(5))/2
GOLD .unequ
a = GOLD ; error: GOLD doesn’t exist

The def() Function

The def() function may be used in an expression to test whether a symbol exists.
The argument is a potential symbol’s name, in quotes:

a = def("SILVER") ; same as: a = 0
SILVER .equ (1 - sqrt(5))/2
a = def("SILVER") ; same as: a = 1

This function is especially useful with .if directives, to assemble a block of code
only if some flag symbol has been set.

a = a * b + DELTA ; do some math
.if def("CHECK_FOR_OVERFLOW") ; are we debugging?
if (a < -8 || a >= 8) handleOverflowError ; if so, check for overflow

.endif ; if not, full speed ahead

You will often see these sorts of flag symbols defined right from the command line.
This makes it easy to turn them on or off simply by specifying a different makefile
target.

% bkasm -D CHECK FOR OVERFLOW myfile.asm

5.3.2 Advanced Symbolism

The expression in a .equ or .set directive is evaluated when the symbol is defined,
but it doesn’t necessarily have to resolve at that time. bkasm represents its symbols,
well, symbolically. Any unrecognized words in the expression are assumed to be
symbols that will be defined later, usually as externals, labels, or data variables,
but possibly later in the same file. These symbols may be manipulated algebraically
before they resolve, or even if they never resolve.

GENIUS .equ 0.01*INSPIRATION + 0.99*PERSPIRATION ; define unresolved symbol
a = 100*GENIUS - 99*PERSPIRATION ; same as: a = 1.234
INSPIRATION .equ 1.234
; works even if PERSPIRATION is never defined

In the above example, the assignment statement is reduced down to a = INSPIRA-

TION when it is assembled, but it doesn’t get all the way to a = 1.234 until the

72 The Assembler

postlinker revisits the file and notices that INSPIRATION has finally been defined.
All expressions involving labels and data variables are late resolvers like this, be-
cause those symbols aren’t defined until the linker’s had its say. You don’t usually
need to know this, but there are a couple subtleties that may confuse you if you let
yourself care about them:

[glarch] = a ; piggybacks below
a = 0 ; generates: sca 0 glarch

[glarch] = a ; generates dummy instruction: s1ac 0 glarch
a = ZERO ; generates unpiggybackable inst: c T 0
ZERO .equ 0

If the above example, a = ZERO had to be implemented with a less efficient instruc-
tion because bkasm didn’t actually know it would be zero until postlink.

5.3.3 The .table Directive

Directive: SYMBOL .table EXPRESSION, EXPRESSION, EXPRESSION, ...

The .table directive is basically the plural form of .equ. It takes a comma-
separated list of expressions, and defines an array of symbols at once.

SQUARE .table 0^2, 1^2, 2^2, 3^2, 4^2, 5^2
ROUND .table 0, pi/2, pi, 3*pi/2, 2*pi

Expressions may refer to a value from the table by giving the table’s name followed
by a zero-based index in parentheses. If it helps, think of the table lookup as a
function.∗

FIBBY .table 0, 1, 1, 2, 3, 8, 13, 21, 34, 55, 89
a = FIBBY(0) ; same as: a = 0
a = FIBBY(1) ; same as: a = 1
a = FIBBY(10) ; same as: a = 89

bkasm inherits Perl’s semantics when it comes to negative indices. A negative index
will start counting backwards from the end of the table, with −1 referring to the
very last entry.

FIBBY .table 0, 1, 1, 2, 3, 8, 13, 21, 34, 55, 89
a = FIBBY(-1) ; same as: a = 89
a = FIBBY(-2) ; same as: a = 55
a = FIBBY(-11) ; same as: a = 0

∗That’s actually what it is.

5.3. Symbols 73

Because table lookup is a function, the index itself may be a symbol, or any expres-
sion.

FIBBY .table 0, 1, 1, 2, 3, 8, 13, 21, 34, 55, 89
NACHOS .equ 3
a = FIBBY(NACHOS*2) ; same as: a = 13

5.3.4 The .export and .x* Directives

Each source file that you assemble is given its own private symbol table to play
with. This means that every one of your source files can define the symbol foo, the
label bar, and the variable foobar without fear of confusion.∗ However, sometimes
you want one of your symbols to transcend the boundaries of its file and be usable
everywhere. That’s what exporting is for. If you want to jump to labels in other
files or refer to external variables, those symbols will have to be exported.

Directive: SYMBOL .export

The .export directive indicates that a given symbol should be placed in the
global symbol table. There is no corresponding .import directive; any exported
symbol can be seen from anywhere. The importing happens during postlink, which
means that the order of the files on the command line doesn’t matter—an exported
symbol can be used by any file, even previous ones.

The exporting happens during postlink too, which means that exported symbols
can refer to symbols that are defined by the linker, such as variables and labels.† It
also means that a symbol is exported with whatever value it had at the end of its
file, which is something to remember if you were busy .setting it to various things.

NUMBER .equ 17
NUMBER .export ; export an equate

variable .ds 2
variable .export ; export address of a data variable

Here:
Here .export ; export address of a label

There .equ Here + NUMBER
There .export ; export a symbol that depends on a label

∗bkasm won’t get confused. You might.
†This implies that exported symbols might be able to refer to other exported symbols. Yes,

but this depends on command line ordering, so only do this if you know what you’re doing, and
maybe not even then.

74 The Assembler

When it is said that an exported symbol is visible from anywhere, anywhere might
be bigger than you’d expect. In Chapter 8, you’ll see that the c and asm output
formats, which generate code to be compiled in with the host software, conveniently
produce header files that define everything in the global symbol table. This means
that when you .export a symbol, it shows up not just in your other assembly files,
but in the host software as well. Since the primary means of communicating with
the 1K is by directly poking around in its memory space, and exported labels and
variables presumably describe good places to poke, you might find this to be to be
bkasm’s most useful feature of all.

It is not an error to export the same symbol from multiple files, so long as both
files agree on what the symbol’s value should be. Exporting different values for the
same symbol is an error. For example, this is okay:

;;; snowball.asm:
LEGS .equ 4
LEGS .export

;;; napoleon.asm:
LEGS .equ 4
LEGS .export

but this is an error:

;;; snowball.asm:
LEGS .equ 4
LEGS .export

;;; napoleon.asm:
LEGS .equ 2 ; Error at postlink:
LEGS .export ; Four legs good, two legs bad.

You may not export tables. Sorry.

In most cases, you may place the .export either before or after the symbol’s dec-
laration. The exception is with labels. For optimization and piggybacking reasons,
the 1k target likes to know which labels are actually used, so you must .export a
label before you declare the label itself. If you try to .export a label that’s already
been defined, it will complain.

.export Here ; correct: export label before the label is defined
Here:
There:
.export There ; error: cannot export label that’s already defined

Directive: SYMBOL .x* ...

5.4. Rounding 75

Not only can you export non-label symbols before or after their declaration, you
can even export them at the same time. If any directive is prefixed with an “x”, the
first argument of that directive will be implicitly exported. This is most useful with
equates and variable declarations:

NUMBER .xequ 17 ; same as: NUMBER .export
; NUMBER .equ 17

variable .xds 2 ; same as: variable .export
; variable .ds 2

5.4 Rounding

bkasm does all of its computation with so-called double-precision floating point math,
which provides plenty of precision for most purposes. When you say “pi”, bkasm
knows what you are talking about to fourteen digits after the decimal point, which
is probably twelve more than you normally remember yourself.

The precision inside a fixed-point DSP processor, on the other hand, is typically
more limited; the poor 1K will never know more than seven or so digits of pi.
Therefore, preparing a number calculated by bkasm for consumption by the processor
requires chopping off some of those extra digits in a manner that is appropriate for
the situation. bkasm provides a number of rounding functions and modes that let
you describe how and where this chopping should occur.

The round *() Functions

bkasm defines six functions for rounding off numbers. Each of them takes two
arguments: BITS indicates the number of bits after the decimal point to round to,
and NUMBER is the value to be rounded. A BITS of zero effectively rounds to an
integer. BITS can even be negative to round to a power of two, if you are into that
sort of thing.

RESULT = round_nearest(BITS, NUMBER)

Rounds to the nearest multiple of 2−BITS. This is what you normally have in mind
when you think about “rounding off”. Matlab calls this function round().

RESULT = round_in(BITS, NUMBER)

Rounds toward zero, producing a result that is equal or smaller in magnitude. You
may need to use this rounding mode when calculating certain critical filter coeffi-
cients in order to prevent instabilities. Matlab calls this function fix().

76 The Assembler

RESULT = round_out(BITS, NUMBER)

Rounds away from zero, producing a result that is equal or larger in magnitude.

RESULT = round_down(BITS, NUMBER)

Rounds down (or as some people would say, “towards −∞”), producing a result that
is less than or equal to NUMBER. This is what you get when truncate a number by
ANDing a bitmask. If your DSP code truncates numbers in this way, this rounding
mode may be useful for producing numbers that correspond. Matlab calls this
function floor().

RESULT = round_up(BITS, NUMBER)

Rounds up (or, towards +∞), producing a result that is greater than or equal to
NUMBER. Matlab calls this function ceil().

RESULT = round_error(BITS, NUMBER)

Refuses to round at all. Instead, if there are significant bits past BITS, an error is
generated. In certain situations, you will come across a coefficient that has no toler-
ance whatsoever. When you want to be certain that the number you’ve calculated is
exactly the number that is being used, down to the last bit, this can come in handy.

Examples:

a = round_nearest(2, -0.51) ; same as: a = -0.5
a = round_in(2, -0.51) ; same as: a = -0.5
a = round_out(2, -0.51) ; same as: a = -0.75
a = round_down(2, -0.51) ; same as: a = -0.75
a = round_up(2, -0.51) ; same as: a = -0.5
a = round_error(2, -0.51) ; error: -0.51 has more than 2 significant bits
a = round_error(2, -0.5) ; same as: a = -0.5 (no error)

5.4.1 The .round Directive and round() Function

The functions in the previous section are useful if you have some number that you
want explicitly rounded to a particular precision. But in a typical program, most
rounding is going on behind the scenes. Whenever bkasm has to stuff a constant
into S3.24, or any other fixed-point representation, it has to round off.

Directive: .round MODE

5.5. Precision 77

The .round directive tells bkasm how it should round off all numbers from that
point on. There are six possible MODEs, corresponding to the six functions described
above. The default mode is “nearest”.∗

;;; reminder: F(x) = x * 2^-24
.round nearest
a = F(-1.1) ; same as: a = F(-1)

.round in
a = F(-1.1) ; same as: a = F(-1)

.round out
a = F(-1.1) ; same as: a = F(-2)

.round down
a = F(-1.1) ; same as: a = F(-2)

.round up
a = F(-1.1) ; same as: a = F(-1)

.round error
a = F(-1.1) ; error: F(-1.1) has more than 24 significant bits
a = F(-1) ; no error

The round() Function

The round() function has the same syntax as the specialized rounding functions
above, but it rounds according to the whatever the current rounding mode is.

.round nearest
a = round(2, 0.51) ; same as: a = 0.5

.round down
a = round(2, 0.51) ; same as: a = 0.5

.round up
a = round(2, 0.51) ; same as: a = 0.75

5.5 Precision

bkasm’s rounding features are for making the best of the bits you’re given. bkasm’s
precision management is about making sure you’re given the bits you need.

Consider the following implementation of a free-running timer intended to wrap
around once a second:

DELTA_PHASE .equ 1/48000 ; increment counter by 1/48000 each sample period
MAX_PHASE .equ 1 ; after 48000 samples, or one second, we wrap around

∗In case you are curious, constants that don’t resolve immediately will still be properly rounded.
Even if a constant doesn’t resolve until postlink, it will be rounded using whatever mode was in
effect when you wrote its instruction.

78 The Assembler

a = [phase] + DELTA_PHASE ; add increment to current phase
b = a ; stash incremented phase in b
a = a - MAX_PHASE ; check if we’ve gone past the maximum phase
if (a < 0) { ; if so, leave wrapped phase in a
a = b ; if not, restore phase from b

}
[phase] = a ; store new phase

This appears simple and innocent enough. Which is why, if you were to run it, you
might be surprised to find that it’s off by almost 10%—the timer actually wraps
around once every 0.91 seconds.

The problem is with this line:

a = [phase] + DELTA_PHASE ; generates: 1mc DELTA_PHASE phase

The 1mc instruction only gives 18 bits of precision to its constant operand. DELTA PHASE

is so small that most of those bits are zero, leaving only three significant bits. It is,
in fact, equivalent to this:

.option allow-integer-constants
1mc 0x000005 phase

The purpose of bkasm’s precision management is to help you avoid this situation.
You tell bkasm how much precision you need for certain symbols and constants, and
bkasm will make sure you get it.

5.5.1 The p() Function and .pequ Directive

The p() function can be used to associate a precision with a term in an expression.
The first argument specifies the number of bits of fractional precision required, and
the second argument is the value itself:

a = a + p(24, 1/3) ; similar to: a = a + 1/3
; but 1/3 must be represented in at least S3.24

This function can be used in a symbol definition as well, to associate a precision
with a symbol:

ONE_THIRD .equ p(24, 1/3) ; similar to: ONE_THIRD .equ 1/3
a = a + ONE_THIRD ; but ONE_THIRD must be represented in at least S3.24

This precision will be associated with any expression that uses this symbol, which
means that it can propagate to other symbol definitions:

5.5. Precision 79

ONE_THIRD .equ p(24, 1/3) ; ONE_THIRD has a precision of 24
TWO_THIRDS .equ ONE_THIRD + 1/3 ; TWO_THIRDS also gets a precision of 24

Directive: NAME .pequ VALUE

If you have several symbols that should be set to some particular precision, you
can set the --precision option to the number of bits that you want, and then
define your symbols with the .pequ directive:

.option precision=24 ; tell .pequ to use a precision of 24
ONE_THIRD .pequ 1/3 ; same as: ONE_THIRD .equ p(24, 1/3)

There is a corresponding .pset directive that behaves the same precision-wise,
but allows symbols to be redefined like .set. The --precision option is only used
by .pequ and .pset; it doesn’t affect anything else.

For convenience, .pequ and .pset can take an optional argument which specifies
an explicit precision to use instead of --precision. The following two lines are
equivalent:

ONE_THIRD .equ p(24, 1/3)
ONE_THIRD .pequ 1/3, 24

Use whichever style makes sense to you.

5.5.2 The ep() Function and .epequ Directive

It’s nice to be able to specify a minimum number of bits for constants and symbols,
but typically, that’s not what you really care about. In the timer example, it’s
perfectly possible for even an experienced coder to notice DELTA_PHASE only getting
18 bits of precision, and still not raise an eyebrow. The shock doesn’t come from
the 18 bits—it comes from the 10% deviation from the intended value.

Looking at it from the other direction, when you design a system, you normally
aren’t directly concerned with the number of bits you’re throwing around. What you
are concerned with (or should be) is relative error—the difference, percentage-wise,
between the ideal coefficient and the coefficient you implement. When you design,
you decide how much error the system can tolerate and still meet the specifications.
bkasm refers to this tolerance as epsilon.

Specifying a precision in terms of epsilon is very similar to specifying it in bits.
The ep() function is just like p(), but the first argument is a fractional tolerance:

a = a + ep(0.001, 1/3) ; similar to: a = a + 1/3
; but the addend must be 1/3 +/- 1/3000

80 The Assembler

In the above example, the precision associated with the constant is such that it
cannot deviate from 1/3 by more than a factor of 0.001, or 0.1%. In this case, that
translates to 12 bits. ep() works in a symbol definition as well:

ONE_THIRD .equ ep(0.001, 1/3) ; similar to: ONE_THIRD .equ 1/3
a = a + ONE_THIRD ; but ONE_THIRD must get at least S3.12

Directive: NAME .epequ VALUE

The epsilon analogue to --precision is, unsurprisingly enough, --epsilon. This
option is used by the .epequ and .epset directives to define a symbol with an
implicit precision:

.option epsilon=0.001 ; tell .epequ to use an epsilon of 0.001
ONE_THIRD .epequ 1/3 ; same as: ONE_THIRD .equ ep(0.001, 1/3)
.option epsilon=0.01 ; switch to a more tolerant tolerance
ONE_THIRD .epset 1/3 ; same as: ONE_THIRD .set ep(0.01, 1/3)

Like the directives in the last section, the epsilon directives can take an optional
second argument specifying the epsilon to use. The following lines are equivalent:

ONE_THIRD .equ ep(0.001, 1/3)
ONE_THIRD .epequ 1/3, 0.001

One caveat with ep(), .epequ, and friends is that the value you’re epsilonning
must resolve immediately, because bkasm needs to translate your epsilon into a plain
old bit precision. In practice, this isn’t much of a problem, because such values don’t
tend to be very dynamic.

5.5.3 Using Precision

By now, it should be clear that the first step in fixing the timer example is to assign
DELTA_PHASE a precision:

DELTA_PHASE .equ p(24, 1/48000) ; DELTA_PHASE must be represented as S3.24

Now, any expression that uses DELTA_PHASE must be given at least 24 bits of frac-
tional precision.∗ If bkasm cannot dig up this much precision, it will generate an
error:

∗This is not strictly true, but believe it anyway. The rules by which precision information
propagates through operators in an expression are too boring to describe here, but you can trust
that they make sense.

5.5. Precision 81

a = [phase] + DELTA_PHASE ; error: no instruction implements this form
; with the required precision

There’s more to precision than just error messages, though. Suppose you had
already noticed that DELTA_PHASE would need all the bits it could get, and wrote
the code to reflect that:

a = [phase] ; get current phase
a += DELTA_PHASE ; add increment, in a separate instruction

This looks like it will use all 24 bits of DELTA_PHASE, even without you telling bkasm

about DELTA_PHASE’s precision. But it might not. Suppose that you decided to
make a copy of phase before you incremented it:

a = [phase] ; get current phase
[oldphase] = a ; remember current phase for later
a += DELTA_PHASE ; add increment

If you don’t specify any precision, bkasm will see that the store can piggyback on
the increment, and DELTA_PHASE will be cut back down to S3.18:

a = [phase] ; generates: cm 1 phase
[oldphase] = a ; piggybacks below
a += DELTA_PHASE ; generates: s1ac DELTA_PHASE oldphase

If bkasm is informed that DELTA_PHASE needs extra precision, it will gladly avoid
the piggyback in order to keep it at S3.24:

DELTA_PHASE .equ p(24, 1/48000) ; DELTA_PHASE gets a precision of 24

a = [phase] ; generates: cm 1 phase
[oldphase] = a ; generates: s1ac 0 oldphase
a += DELTA_PHASE ; generates: 1ac DELTA_PHASE

The above solution could also be written as:

DELTA_PHASE .equ 1/48000 ; DELTA_PHASE has no precision
a = [phase]
[oldphase] = a
a += p(24, DELTA_PHASE) ; but this expression does

Incidentally, with the corrections above, the timer wraps around every 1.001
seconds. The error has dropped from almost 10% down to about 0.1%. What a
difference six bits make!

82 The Assembler

5.5.4 Natural Precision

On some occasions, you may find bkasm blatantly ignoring your request for precision.
For example:

.option precision=24 ; set .pequ precision to 24
DELTA_PHASE .pequ 1/256 ; DELTA_PHASE gets a precision of 24
a = [phase] + DELTA_PHASE ; but this works without error!

bkasm isn’t simply being rude to you. What happened here was that bkasm noticed
that 1/256 looks exactly the same whether you represent it in S3.24 or S3.18, and
knew it could get away with shoving it into a S3.18 operand without affecting the
functionality.

1/256 is said to have a natural precision of eight, which means that once you look
eight bits past the radix point, all you’ll see are zeros. That is, this number can be
represented exactly in S3.8 format, and any more is overkill. So even though you
assigned the symbol a precision of 24, bkasm is smart enough to see that the value’s
natural precision is lower, and go with that instead.

Natural precision is also used for other things than overriding your specified
precision. For example, the 1K offers two instructions that multiply the accumulator
by a constant and add another constant. One of them represents the multiplier in
S3.18 and the addend in S3.8, and the other does the opposite:

a = a * p(18, 1/3) + p(8, 1/7) ; generates: cad 1/3 1/7
a = a * p(8, 1/3) + p(18, 1/7) ; generates: dac 1/3 1/7

In the absence of explicit precisions like those above, bkasm normally prefers to give
the extra bits to the multiplier. But if the multiplier has a natural precision of eight
or less, S3.18 would obviously be wasted on it, so the addend gets the high precision
instead:

a = a * 1/3 + 1/7 ; generates: cad 1/3 1/7
a = a * 1/4 + 1/7 ; generates: dac 1/4 1/7

5.6 Labels

A label is a symbol which points to an address in code memory. You declare a label
simply by writing its name, followed by a colon:

DefJam:
a = [hip] + HOP

5.6. Labels 83

In the above example, the symbol DefJam is defined as the address of the subsequent
instruction. You may put instructions on the same line as the label, if you prefer:

BlueNote: a = 7/4

The label declaration should be placed near the start of a line, although it can be
preceded by whitespace or curly braces. You may also stack multiple labels on the
same line, if you think that’s readable:

if (b == [mg]) {
Arista: [rc] = a ; labels may be indented

} Columbia: Atlantic: u = [niversal] ; labels may be stacked

The primary purpose of labeling your code is to help you jump around.

if ([house] == PAIN) TommyBoy ; if condition is true, jump to ----
a = UP + [down] ; |

TommyBoy: ; here <----------------------------

See Section 4.6 for the details of 1K flow control.

As described on page 74, an exported label is also useful for telling the host
software where it should load in a particular routine:

.export StartOfOscillator
StartOfOscillator:
;;; oscillator code goes here

If you are using the c or asm output formats, your host software will be compiled
with a constant that says where StartOfOscillator is, so it knows where to load
in its oscillators. Don’t forget that you must export a label before it is defined.

Labels can also be useful for defining a local scope. See Section 5.8 for the details
of locality.

5.6.1 Local Labels

5.6.2 Macro Labels

84 The Assembler

5.7 Data

5.8 Locals

5.9 Conditional Assembly

5.10 Iterative Assembly

5.11 C-style Macros

5.12 Asm-style Macros

5.13 Sections

5.14 Embedded Perl

5.15 Legacy Directives

6
The Linker

85

7
The Listing File

87

8
Output Formats

8.1 hexdump

8.2 c

8.3 asm

89

9
Extending bkasm

9.1 Output Formats

9.2 Targets

9.3 Linkers

91

A
1K Machine Instructions

1mc C M a = [M] + C18 u = [M]

l1mc C M a = [M] + C18 u = [M] b = [M]

mmc C M a = [M] ∗ [M] + C18 u = [M]

xmmc C M a = [M] ∗ [M] + C18 u = [M] b = a

lmmc C M a = [M] ∗ [M] + C18 u = [M] b = [M]

amb M a = [M] ∗ a + b u = [M]

amc C M a = [M] ∗ a + C18 u = [M]

lamc C M a = [M] ∗ a + C18 u = [M] b = [M]

bmc C M a = [M] ∗ b + C18 u = [M]

cm C M a = [M] ∗ C18 u = [M]

xcm C M a = [M] ∗ C18 u = [M] b = a

lcm C M a = [M] ∗ C18 u = [M] b = [M]

cma C M a = [M] ∗ C18 + a u = [M]

xcma C M a = [M] ∗ C18 + a u = [M] b = a

lcma C M a = [M] ∗ C18 + a u = [M] b = [M]

cmb C M a = [M] ∗ C18 + b u = [M]

93

94 Appendix A

1ac C a = a + C24 u = a

s1ac C M a = a + C18 u = a [M] = a

x1ac C a = a + C24 u = a b = a

sx1ac C M a = a + C18 u = a [M] = a b = a

l1ac C M a = a + C18 u = a b = [M]

aac C a = a ∗ a + C24 u = a

saac C M a = a ∗ a + C18 u = a [M] = a

sxaac C M a = a ∗ a + C18 u = a [M] = a b = a

laac C M a = a ∗ a + C18 u = a b = [M]

bac C a = a ∗ b + C24 u = a

sbac C M a = a ∗ b + C18 u = a [M] = a

lca C M a = a ∗ C18 u = a b = [M]

sca C M a = a ∗ C18 u = a [M] = a b = [M]

sxca C M a = a ∗ C18 u = a [M] = a b = a

cam C M a = a ∗ C18 + [M] u = a

cab C a = a ∗ C18 + b u = a

scab C M a = a ∗ C18 + b u = a [M] = a

cad C D a = a ∗ C18 + D8 u = a

dac D C a = a ∗D8 + C18 u = a

1bc C a = b + C24 u = b

s1bc C M a = b + C18 u = b [M] = a

bbc C a = b ∗ b + C24 u = b

sbbc C M a = b ∗ b + C18 u = b [M] = a

cb C a = b ∗ C18 u = b

scb C M a = b ∗ C18 u = b [M] = a

cbm C M a = b ∗ C18 + [M] u = b

scba C M a = b ∗ C18 + a u = b [M] = a

sauc C M a = u ∗ a + C18 [M] = a

sbua M a = u ∗ b + a [M] = a

sbuc C M a = u ∗ b + C18 [M] = a

scu C M a = u ∗ C18 [M] = a

scua C M a = u ∗ C18 + a [M] = a

scub C M a = u ∗ C18 + b [M] = a

B
1K Forms

form available piggybacks instruction

Transfers

a = u [M] = a scu

a = [M] b = a b = [M] *cm

a = a [M] = a b = a b = [M] *1ac

a = b [M] = a *1bc

a = C24 c

a = 0 [M] = a b = a b = [M] *ca

Addition

a = u + a [M] = a scua

a = u + b [M] = a scub

a = [M] + a b = a b = [M] *cma

a = [M] + b cmb

a = [M] + C24L b = [M] *1mc

a = a + C24SL [M] = a b = a b = [M] *1ac

a = a + b [M] = a *cab

a = b + C24S [M] = a *1bc

95

96 Appendix B

form available piggybacks instruction

Subtraction

a = [M]− a cam

a = [M]− b cbm

a = a− u [M] = a scua

a = a− [M] b = a b = [M] *cma

a = a− b [M] = a *cb

a = b− u [M] = a scub

a = b− [M] cmb

a = b− a [M] = a *cab

a = C18 − a dac

Multiplication

a = u ∗ a [M] = a sauc

a = u ∗ b [M] = a sbuc

a = u ∗ C18 [M] = a scu

a = [M] ∗ [M] b = a b = [M] *mmc

a = [M] ∗ a b = [M] *amc

a = [M] ∗ b bmc

a = [M] ∗ C18 b = a b = [M] *cm

a = a ∗ a [M] = a b = a b = [M] *aac

a = a ∗ b [M] = a *bac

a = a ∗ C18 [M] = a b = a b = [M] *ca

a = b ∗ b [M] = a *bbc

a = b ∗ C18 [M] = a *cb

1K Forms 97

form available piggybacks instruction

Multiplication and Addition

a = u ∗ a + C18 [M] = a sauc

a = u ∗ b + a [M] = a sbua

a = u ∗ b + C18 [M] = a sbuc

a = u ∗ C18 + a [M] = a scua

a = u ∗ C18 + b [M] = a scub

a = [M] ∗ [M] + C18 b = a b = [M] *mmc

a = [M] ∗ a + b amb

a = [M] ∗ a + C18 b = [M] *amc

a = [M] ∗ b + C18 bmc

a = [M] ∗ C18 + a b = a b = [M] *cma

a = [M] ∗ C18 + b cmb

a = a ∗ a + C24SXL [M] = a b = a b = [M] *aac

a = a ∗ b + C24S [M] = a *bac

a = a ∗ C18 + [M] cam

a = a ∗ C18 + b [M] = a *cab

a = a ∗ C18 + C8 cad

a = a ∗ C8 + C18 dac

a = b ∗ b + C24S [M] = a *bbc

a = b ∗ C18 + [M] cbm

a = b ∗ C18 + a [M] = a *cb

Masking

a = a&b andb

a = a&C24 andc

Notes

The precisions of some constants are affected by certain piggybacks. If a form
refers to C24S , this means that the constant gets 24-bit precision in the absence of
piggybacking, but drops to 18-bit precision with a store piggyback ([M] = a). C24X

and C24L refer similarly to the xfer (b = a) and load (b = [M]) piggybacks.

The instruction given in the last column is the typical one used for the given
form, but bkasm may use other instructions in some instances. Do not rely on a
form always being mapped to a particular instruction.

C
Directives

The following are terse descriptions of bkasm’s directives, for use as a quick reference.
A full discussion of a directive, with examples, can usually be found on the page
number indicated on the right side.

As explained on page 62, the first argument of any directive may go either before
or after the directive itself. Any directive may also be written “C-style” with a
pound sign (#) instead of a dot, in which case all arguments must come after the
directive.

.abs Synopsis: SYMBOL .abs [EXPRESSION] p. ??
Example: myvariable abs 0x400

Legacy directive for 1kasm compatibility. Creates a symbol SYMBOL which
equals EXPRESSION. If EXPRESSION is not given, uses the next available address.
The dot is optional. This directive is strongly deprecated; use .d* and related
directives for memory allocation instead.

.d* Synopsis: SYMBOL .d* [LENGTH] p. ??
Example: mybuffer .ds 256

The .ds directive allocates LENGTH words of data in the sdata chunk of the
current section, and defines a symbol which points to them. “s” may be
replaced with any letter in order to allocate data in that particular chunk. If
LENGTH is not given, it defaults to one.

99

100 Appendix C

.data Synopsis: SYMBOL .data CHUNK [, LENGTH] p. ??
Example: mybuffer .data s, 256

Allocates LENGTH words of data in the CHUNKdata chunk of the current section,
and defines a symbol which points to them. If LENGTH is not given, it defaults
to one.

.define Synopsis: CMACRO .define DEFINITION p. ??
Example: .define DEG2RAD(deg) (180*pi/deg)

Defines a C-style text-substitution macro. If the macro takes arguments,
CMACRO must be placed after .define, as shown in the example.

.else Synopsis: .else p. ??

Begins a block of code that is assembled only if the condition in the preceding
.if or .elsif directive is false.

.elsif Synopsis: .elsif EXPRESSION p. ??
Example: .elsif BANANAS != 0

Begins a block of code that is assembled only if EXPRESSION is true and the
condition in the preceding .if or .elsif directive is false.

.endif Synopsis: .endif p. ??

Ends a conditional block of code started with .if.

.endloop Synopsis: .endloop p. ??

Ends an iterative block of code started with .for, .while, or .repeat.

.endm Synopsis: .endm p. ??

Ends a macro definition started with .macro or .perlmacro.

.endperl Synopsis: .endperl p. ??

Ends a block of Perl code started with .perl.

.epequ Synopsis: SYMBOL .epequ EXPRESSION [, EPSILON] p. 80
Example: FREQUENCY .epequ 1000/48000, 0.001

Defines a symbol and associates a particular precision with it. If EPSILON is
not given, it defaults to the value of the --epsilon option.

Directives 101

.epset Synopsis: SYMBOL .epset EXPRESSION [, EPSILON] p. 80
Example: FREQUENCY .epset 1000/48000, 0.001

Defines a symbol, redefining it if it already exists, and associates a particular
precision with it. If EPSILON is not given, it defaults to the value of the
--epsilon option.

.equ Synopsis: SYMBOL .equ EXPRESSION p. 69
Example: PHI .equ (1 + sqrt(5)) / 2

Evaluates EXPRESSION and creates the symbol SYMBOL. The dot is optional,
but recommended.

.error Synopsis: .error MESSAGE p. 66
Example: .error Everything is wrong!

Generates an assembler error.

.eval Synopsis: .eval PERLCODE p. ??
Example: .eval "a += " . (ADD B ? "b" : "1.7")

Evaluates PERLCODE as a line of Perl code, and then assembles the result as
bkasm code. bkasm’s preprocessing places some restrictions on PERLCODE; the
.perl directive is more robust.

.exitm Synopsis: .exitm p. ??

During evaluation of a macro, immediately terminates the macro.

.export Synopsis: SYMBOL .export p. 73

Indicates that SYMBOL should be placed in the global symbol table, where it
can be seen by all source files and possibly included in the output file.

.for Synopsis: .for SYMBOL = EXPR .. EXPR p. ??
Example: .for COUNT = 1 .. 17

Begins a block of code, ending with .endloop, which is assembled multiple
times as SYMBOL is iterated over the indicated range. SYMBOL is a local symbol
which disappears after the .endloop.

.if Synopsis: .if EXPRESSION p. ??
Example: .if BANANAS == 4

Begins a block of code that is assembled only if EXPRESSION is true.

102 Appendix C

.include Synopsis: .include FILENAME p. 65
Example: .include "definitions.inc"

Reads and assembles the given file.

.l* Synopsis: SYMBOL .l* [LENGTH [, ENDSCOPE]] p. ??
Example: localbuffer .ls 16

Behaves like .d*, except that the allocated data is locally scoped. See .local

for a description of ENDSCOPE.

.lequ Synopsis: SYMBOL .lequ EXPRESSION [, ENDSCOPE] p. ??
Example: ANGLE .lequ pi/8

Evaluates EXPRESSION and creates the locally-scoped symbol SYMBOL. If END-
SCOPE is not given, the symbol disappears (or reverts back to whatever it was
before) at the end of the innermost block. ENDSCOPE can be a label or string
of tildes in order to indicate a named scope or local label scope respectively.

.local Synopsis: SYMBOL .local CHUNK [,LENGTH [,ENDSCOPE]] p. ??
Example: localbuffer .local s, 16

Allocates LENGTH words of locally-scoped data in the CHUNKdata chunk of the
current section, and defines a symbol which points to them. If ENDSCOPE is
not given, the data is deallocated at the end of the innermost block. ENDSCOPE
can be a label or string of tildes in order to indicate a named scope or local
label scope respectively.

.loption Synopsis: .loption OPTION[=VALUE] p. ??
Example: .loption precision=24

This directive has not been implemented yet.

.macro Synopsis: MACRO .macro [ARGUMENTS/PATTERN] p. ??
Example: getdata .macro $pointer, $length

Begins a macro definition, ending with .endm. .macro may be followed by
either a comma-separated list of macro arguments, as shown above, or a quoted
string indicating a pattern to match. Macro arguments must begin with a
dollar sign.

.mem Synopsis: SYMBOL .mem LENGTH p. ??
Example: mybuffer mem 256

Directives 103

Legacy directive for 1kasm compatibility. Creates a symbol SYMBOL which
points to a buffer of length LENGTH. The dot is optional. This directive is
strongly deprecated; use .d* and related directives for memory allocation in-
stead.

.option Synopsis: .option OPTION[=VALUE] p. 63
Example: .option list-number-format=hex

Sets an assembler option. If VALUE is not given, it defaults to one.

.pequ Synopsis: SYMBOL .pequ EXPRESSION [, PRECISION] p. 79
Example: FREQUENCY .epequ 1000/48000, 24

Defines a symbol and associates a particular precision with it. If PRECISION

is not given, it defaults to the value of the --precision option.

.perl Synopsis: .perl p. ??

Begins a block of Perl code, ending with .endperl. The code is evaluated,
and the result is then assembled as bkasm code.

.perlmacro Synopsis: MACRO .perlmacro [ARGUMENTS/PATTERN] p. ??
Example: getdata .perlmacro $pointer, $length

Begins a perlmacro definition, ending with .endm. The directive syntax is the
same as with .macro, but the body of the macro definition is compiled as a
Perl subroutine. When the macro is invoked, the subroutine is called with
the macro arguments in lexical variables, and the return value is assembled as
bkasm code.

.popsection Synopsis: .popsection p. ??

Sets the current section to whatever it was at the time of the last .pushsection
directive.

.pset Synopsis: SYMBOL .pset EXPRESSION [, PRECISION] p. 79
Example: FREQUENCY .epequ 1000/48000, 24

Defines a symbol, redefining it if it already exists, and associates a particular
precision with it. If PRECISION is not given, it defaults to the value of the
--precision option.

.pushsection Synopsis: .pushsection p. ??

104 Appendix C

Makes a note of the current section, for later use by .popsection.

.repeat Synopsis: .repeat EXPRESSION p. ??
Example: .repeat 4

Begins a block of code, ending with .endloop, which is assembled EXPRESSION

times.

.round Synopsis: .round MODE p. 76
Example: .round nearest

Sets the current rounding mode, which affects the round() function and all
internal fixed-point rounding.

.section Synopsis: .section SECTION p. ??
Example: .section Equalizer/FilterBank

Sets the section into which subsequent instructions and data allocation will be
assembled.

.seg Synopsis: SYMBOL .seg [EXPRESSION] p. ??
Example: seg 0x100

Legacy directive for 1kasm compatibility. Sets the address for subsequent .abs
and .mem directives. The dot is optional. This directive is strongly deprecated;
use .d* and related directives for memory allocation instead.

.set Synopsis: SYMBOL .set EXPRESSION p. 70
Example: COUNTER .set COUNTER + 1

Evaluates EXPRESSION and defines the symbol SYMBOL, redefining it if it already
exists.

.setdef Synopsis: CMACRO .setdef DEFINITION p. ??
Example: .setdef CURRENTMASK(x) (x & 0xff00)

Defines a C-style text-substitution macro, redefining it if it already exists. If
the macro takes arguments, CMACRO must be placed after .setdef, as shown
in the example.

.table Synopsis: TABLE .table EXPR [, EXPR, ...] p. 72
Example: PRIMES .table 2, 3, 5, 7, 11, 13, 17, 19

Directives 105

Evaluates all of the arguments, and creates a function TABLE(x) which returns
the x th value in the list. If x is negative, it counts backwards from the end of
the list.

.undef Synopsis: CMACRO .undef p. ??

Removes a C-style macro created with .define or .setdef, if one exists.
CMACRO should just be the macro’s name, without any argument list.

.unequ Synopsis: SYMBOL .unequ p. 70

Removes the SYMBOL symbol, if it exists.

.warn Synopsis: .warn MESSAGE p. 66
Example: .warn Things are strange...

Generates an assembler warning.

.while Synopsis: .while EXPRESSION p. ??
Example: .while COUNT < 5

Begins a block of code, ending with .endloop, which is repeatedly assembled
as long as EXPRESSION evaluates true. If EXPRESSION is false to begin with,
the block is never assembled.

.x* Synopsis: SYMBOL .x* ... p. 73
Example: publicbuffer .xds 256

If any directive is prefixed with an “x”, the first argument of that directive is
interpreted as the name of a symbol to export. The directive is then evaluated
normally.

D
Options

The following are terse descriptions of bkasm’s options, for use as a quick reference.
The page numbers on the right indicate where the option is introduced in context;
a more in-depth discussion sometimes awaits there.

As explained on page 19, any option may be set from either the command line or
in a source file:

command line:
% bkasm --foo-bar=3 myfile.asm

; source file:
.option foo-bar=3

If the option is simply named, without any equals sign, it is implicitly set to 1. Most
options may be disabled by setting them to 0.

--allow-alternative-radix-designators p. ??
Assembler: Allows hexadecimal numbers such as 0x123 to be expressed as
$123 or 123H. Binary numbers such as 0b0101 may be given as %0101 or 0101B
and octal numbers such as 0123 may be given as 123Q. Enabled by default.

--allow-destructive-if p. 57
1k target: Allows you to write if statements that implicitly clobber the
accumulator, such as if (a > 4).

107

108 Appendix D

--allow-integer-constants p. 28
1k target: Compatibility option, enabled by --compatible. With this option
enabled, if the constant operand of a 1k machine instruction begins with a
radix designator, it will not be interpreted as a fixed-point number; instead,
the bit pattern will be used directly in the constant field of the instruction
word.

--allow-one-sided-overflow p. 51
1k target: With this option enabled, a lone (a >= -8) or (a < 8) will actu-
ally refer to (a >= -8) && (a < 8).

--allow-quote-mark-suffix p. ??
1k target: Compatibility option, enabled by --compatible. With this op-
tion enabled, foo" and foo’ refer to foo_TAIL and foo_CENTER respectively.
Incompatible with pattern macros, among other things.

--allow-skip-count p. ??
1k target: Compatibility option, enabled by --compatible. Quells the warn-
ing when the skip instruction is given a skip count instead of a label.

--case-insensitive p. ??
Global: Compatibility option, enabled by --compatible. Converts source
files to lowercase before assembling.

--cmacro-depth=NUMBER p. ??
Assembler: Specifies how deeply C-style macros may recurse before bkasm

gets suspicious. Defaults to 32.

--compatible (-k) p. 21
Global: Enables some options to help compatibility with code written for the
1kasm tool.

--define-symbol=NAME=VALUE (-D NAME=VALUE) p. 21
Assembler: Defines a symbol that will be visible from all source files. Only
useful from the command line; in a source file, use .equ and friends. If VALUE
is omitted, it defaults to 1.

--epsilon=NUMBER p. 80
Assembler: Specifies the default epsilon value used by .epequ and .epset.
Defaults to 1.

--format=FORMATNAME (-F FORMATNAME) p. 20

Options 109

Global: Specifies the output format to use for generating the output files.
This option need not go on the command line—it may be specified in any
source file, including the linker script. Defaults to hexdump.

--include-path=PATHNAME (-I PATHNAME) p. 20

Assembler: Specifying this option adds to the list of pathnames which are
searched when the .include directive is used with a filename in <pointy
brackets>.

--linker=LINKERNAME (-L LINKERNAME) p. 22

Global: Specifies the linker to use. Defaults to linker.

--linkfile=FILENAME (-l FILENAME) p. 20

Global: Specifies the linker script to use. If not given, a simple default script
is used.

--list-eval-definitions p. ??

Listing file: If enabled, includes the Perl code from .perl blocks in the listing
file. Enabled by default, but you may want to disable it to avoid cluttering up
your listing.

--list-evals p. ??

Listing file: If enabled, includes the assembly output from .perl blocks in
the listing file. Enabled by default.

--list-included-files p. ??

Listing file: If enabled, includes the contents of files included with the .in-

clude directive in the listing file. Enabled by default, but you may want to
disable it to avoid cluttering up your listing.

--list-macro-definitions p. ??

Listing file: If enabled, includes the macro definitions in the listing file.
Enabled by default, but you may want to disable it to avoid cluttering up
your listing.

--list-macros p. ??

Listing file: If enabled, includes the output of invoked macros in the listing
file. Enabled by default.

--list-margin=NUMBER p. ??

110 Appendix D

Listing file: Specifies the width of the left column of the listing file, where
the machine instructions are shown. Defaults to a target-dependent value.

--list-messages p. ??
Listing file: If enabled, error and warning messages are included at the top
of the listing file as well as written to the terminal. Enabled by default.

--list-number-format=NUMBERFORMAT p. ??
1k target: Specifies the number format to use for fractional constants in the
listing file. Possibilities include frac, dec, hex, and hexfrac. Defaults to frac.

--listfile=FILENAME (-a FILENAME) p. 20
Global: Specifies the filename of the listing file to create. If FILENAME is -,
the listing file is written to the terminal. If FILENAME is =, an appropriate
filename is chosen for you.

--loop-iterations=NUMBER p. ??
Assembler: Specifies how many times a .for, .while, or .repeat block may
loop before bkasm thinks that you’re stuck. Defaults to 100.

--macro-depth=NUMBER p. ??
Assembler: Specifies how deeply macros may recurse before bkasm gets sus-
picious. Defaults to 64.

--max-errors=NUMBER p. 22
Global: Specifies how many error messages bkasm will generate before it bails
out. Defaults to 20.

--message-width=NUMBER p. 23
Global: Specifies the line-wrapping width in characters for error and warning
messages. If set to zero, no line-wrapping will be performed. Defaults to 78.

--optimize (-O) p. 21
Global: Enables the standard set of optimizations.

--optimize-all p. 21
Global: Enables all optimizations.

--optimize-load-placement p. 40
1k target: Allows assignments to the b register to be moved to an optimal
location.

Options 111

--outfile=FILENAME (-o FILENAME) p. 20
Global: Specifies the output filename(s) to create. The exact behavior de-
pends on the output format used. If not given, an appropriate filename will
be chosen for you.

--output-asm-define-byte-instruction=INSTRUCTION p. ??
asm output format: Specifies the pseudo-op that the host assembler uses for
declaring a table of literal byte values. Defaults to “db”.

--output-length-little-endian p. ??
c/asm output formats: If --output-length-word is enabled, the length word
is written bytewise little-endian instead of big-endian.

--output-length-word=SIZE p. ??
c/asm output formats: Prefixes the object code for each section with a word
indicating the number of instructions in the section. SIZE may be one of:
none, byte, short, long, longlong, quad, or an explicit number of bits.

--output-little-endian p. ??
c/asm output formats: If enabled, the object code is written bytewise little-
endian instead of big-endian.

--output-prefix p. ??
c/asm output formats: Specifies a common prefix to use for the names of the
arrays for each section. If not given, an appropriate prefix is chosen for you.

--output-top-section p. ??
Global: Forces bkasm to output an object code array representing all sections
together.

--outsection=SECTION (-S SECTION) p. 21
Global: Adds to the list of sections that will be output.

--piggyback-literal-instructions p. 39
1k target: If enabled, machine instructions written directly in the source file
are susceptible to piggybacking.

--precision=NUMBER p. 79
Assembler: Specifies the default precision value used by .pequ and .pset.
Defaults to 0.

--remember-options p. 64

112 Appendix D

Global: If enabled, all other options are carried over into subsequent source
files.

--show-error-name p. 22

Global: If enabled, errors and warnings messages will be prefixed with their
internal names.

--show-message-line (-n) p. 21

Global: If enabled, errors and warnings are followed with the line of source
code responsible for the message.

--target=TARGETNAME (-T TARGETNAME) p. 21

Global: Specifies the target to use. Defaults to 1k.

--warn (-W) p. 21

Global: Enables the standard set of warnings.

--warn-all p. 22

Global: Enables all warnings.

--warnings-are-errors p. 22

Global: Treats warnings as if they were error messages.

E
Mathematical Functions

Any Perl function may be used in a bkasm expression. The following are some of
the more useful functions for mathematical manipulation. All of these functions
accept complex arguments, and may return complex results when appropriate. All
trig operations are in radians.

Im(x) Imaginary part of x
Re(x) Real part of x
abs(x) Absolute value of x
acos(x) Arc cosine of x
acosec(x) Arc cosecant of x
acosech(x) Hyperbolic arc cosecant of x
acosh(x) Hyperbolic arc cosine of x
acot(x) Arc cotangent of x
acotan(x) Arc cotangent of x
acotanh(x) Hyperbolic cotangent of x
acoth(x) Hyperbolic cotangent of x
acsc(x) Arc cosecant of x
acsch(x) Hyperbolic arc cosecant of x
arg(x) Polar argument of x (−π to π)
asec(x) Arc secant of x
asech(x) Hyperbolic secant of x

113

114 Appendix E

asin(x) Arc sine of x
asinh(x) Hyperbolic arc sine of x
atan(x) Two-quadrant arc tangent of x (−π/2 to π/2)
atan2(y,x) Four-quadrant arc tangent of y/x (−π to π)
atanh(x) Hyperbolic arc tangent of x
cbrt(x) Cube root of x
cos(x) Cosine of x
cosec(x) Cosecant of x
cosech(x) Hyperbolic cosecant of x
cosh(x) Hyperbolic cosine of x
cot(x) Cotangent of x
cotan(x) Cotangent of x
cotanh(x) Hyperbolic cotangent of x
coth(x) Hyperbolic cotangent of x
csc(x) Cosecant of x
csch(x) Hyperbolic cosecant of x
exp(x) ex

ln(x) Natural logarithm of x
log(x) Natural logarithm of x
log10(x) Base-10 logarithm of x
logn(x,n) Base-n logarithm of x
rho(x) Absolute value of x
rootk(x,n,k) kth n-root of x
sec(x) Secant of x
sech(x) Hyperbolic secant of x
sin(x) Sine of x
sinh(x) Hyperbolic sine of x
sqrt(x) Square root of x
sqrt(x) Square root of x
tan(x) Tangent of x
tanh(x) Hyperbolic tangent of x
theta(x) Polar argument of x (−π to π)

	Introduction
	 User's Automatic
	User's Automatic
	Invocation
	Basic Syntax
	Piggybacking
	Indirect Addressing
	Flow Control
	Symbols
	Data
	Conditional and Iterative Assembly
	Macros
	Sections and Linking
	Output Formats

	 User's Manual
	Invocation
	How bkasm Eats Your Words
	Options
	Command Line Switches
	Messages

	The 1K Target
	Processor Description
	Machine Instruction Syntax
	Assignment Statements
	The Accumulator
	Memory
	The b Register
	The u Register

	Indirect Addressing
	Conditionals
	1K-style Conditionals
	C-style Conditionals

	Flow Control
	1K-style Flow Control
	Asm-style Flow Control
	C-style Flow Control

	The Assembler
	Basics
	The .option Directive
	The .include Directive
	The .error and .warn Directives

	Expressions
	Operators and Functions
	Complex Math

	Symbols
	The .equ, .set, and .unequ Directives
	Advanced Symbolism
	The .table Directive
	The .export and .x* Directives

	Rounding
	The .round Directive and round() Function

	Precision
	The p() Function and .pequ Directive
	The ep() Function and .epequ Directive
	Using Precision
	Natural Precision

	Labels
	Local Labels
	Macro Labels

	Data
	Locals
	Conditional Assembly
	Iterative Assembly
	C-style Macros
	Asm-style Macros
	Sections
	Embedded Perl
	Legacy Directives

	The Linker
	The Listing File
	Output Formats
	hexdump
	c
	asm

	Extending bkasm
	Output Formats
	Targets
	Linkers

	1K Machine Instructions
	1K Forms
	Directives
	Options
	Mathematical Functions

